Journal of Infrared and Millimeter Waves, Volume. 39, Issue 6, 684(2020)

Spin-orbit coupling and Zeeman effect in HgCdTe inversion layer with interface microroughness

Hua-Yao TU1,2, Meng LYU1, Song-Ran ZHANG1,3, Guo-Lin YU1、*, Yan SUN1, Ting-Ting KANG1, Xin CHEN1, and Ning DAI1
Author Affiliations
  • 1State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
  • 2University of Chinese Academy of Sciences, Beijing100049, China
  • 3School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai200093, China
  • show less
    References(26)

    [1] Rogalski A. HgCdTe infrared detector material: history, status and outlook[J]. Reports on Progress in Physics, 68, 2267-2336(2005).

    [2] Rogalski A. HgCdTe infrared detectors - Historical prospect[J]. Proc SPIE, 4999, 431-442(2003).

    [3] Sher J C A. Physics and properties of narrow gap semiconductors[M]. NY(2008).

    [4] Datta S, Das B. Electronic analog of the electro‐optic modulator[J]. Applied Physics Letters, 56, 665-667(1990).

    [5] Iordanskii S, Lyanda-Geller Y B, Pikus G. JETP Lett 60, 206 (1994)[J]. Pis’ ma Zh Eksp Teor Fiz, 60, 199-206(1994).

    [6] Minkov G M, Germanenko A V, Rut O E. Weak antilocalization in quantum wells in tilted magnetic fields[J]. Physical Review B, 70, 155323(2004).

    [7] Golub L E. Weak antilocalization in high-mobility two-dimensional systems[J]. Physical Review B, 71, 23510(2005).

    [8] Mal’Shukov A G, Chao K A, Willander M. Magnetoresistance of a weakly disordered III-V semiconductor quantum well in a magnetic field parallel to interfaces[J]. Physical Review B, 56, 6436-6439(1997).

    [9] Mal’Shukov A G, Froltsov V A, Chao K A. Crystal anisotropy effects on the weak-localization magnetoresistance of a III-V semiconductor quantum well in a magnetic field parallel to interfaces[J]. Physical Review B, 59, 5702-5710(1999).

    [10] Studenikin S A, Coleridge P T, Yu G. Electron spin–orbit splitting in a InGaAs/InP quantum well studied by means of the weak-antilocalization and spin-zero effects in tilted magnetic fields[J]. Semiconductor Science and Technology, 20, 1103-1110(2005).

    [11] Cabañas S, Schäpers T, Thillosen N. Suppression of weak antilocalization in an AlxGa1-xN∕GaN two-dimensional electron gas by an in-plane magnetic field[J]. Physical Review B, 75, 195329(2007).

    [12] Thillosen N, Schäpers T, Kaluza N. Weak antilocalization in a polarization-doped AlxGa1-xN∕GaN heterostructure with single subband occupation[J]. Applied Physics Letters, 88, 022111(2006).

    [13] Lv M, Yu G, Xu Y. Dependence of spin dynamics on in-plane magnetic field in AlGaN/GaN quantum wells[J]. EPL (Europhysics Letters), 112, 67003(2015).

    [14] López-Richard V, Marques G E, Trallero-Giner C. Anomalous Landé factor in narrow-gap semiconductor heterostructures[J]. Solid State Communications, 114, 649-654(2000).

    [15] Zhang X C, Ortner K, Pfeuffer-Jeschke A. Effective g factor of n-type HgTe/Hg1-xCdxTe single quantum wells[J]. Physical Review B, 69, 1153401-1153407(2004).

    [16] Qiu Z J, Gui Y S, Shu X Z. Giant Rashba spin splitting in HgTe/HgCdTe quantum wells[J]. Acta Physica Sinica, 53, 1186-1190(2004).

    [17] Zheng G Z, Guo S L, Tang D Y. Shubnikov-de haas oscillation in n-Hg1-xCdxTe[J]. Acta Physica Sinica, 36, 114-119(1987).

    [18] Gudina S V, Neverov V N, Ilchenko E V. Electron effective mass and g factor in wide HgTe quantum wells[J]. Semiconductors, 52, 12-18(2018).

    [19] Kohda M, Nitta J. Enhancement of spin-orbit interaction and the effect of interface diffusion in quaternary InGaAsP/InGaAs heterostructures[J]. Physical Review B, 81, 115118(2010).

    [20] Mathur H, Baranger H U. Random Berry phase magnetoresistance as a probe of interface roughness in Si MOSFET’s[J]. Physical Review B, 64, 235325(2001).

    [21] Meyer J S, Altland A, Altshuler B L. Quantum transport in parallel magnetic fields: A realization of the Berry-Robnik symmetry phenomenon[J]. Physical Review Letters, 89, 206601(2002).

    [22] Liu X Z, Yu G, Wei L M. The nonlinear Rashba effect in Hg0.77Cd0.23Te inversion layers probed by weak antilocalization analysis[J]. Journal of Applied Physics, 113, 013704(2013).

    [23] Chu J H, Mi Z Y, Sizmann R. Subband structure in the electric quantum limit for Hg1-xCdxTe[J]. Physical Review B, 44, 1717-1723(1991).

    [24] Sun L, Lv M, Liu X. Zeeman splitting and spin-orbit interaction in Hg1-xCdxTe inversion layers[J]. EPL (Europhysics Letters), 115, 17007(2016).

    [25] Yang R, Gao K, Wei L. Weak antilocalization effect in high-mobility two-dimensional electron gas in an inversion layer on p-type HgCdTe[J]. Applied Physics Letters, 99, 042103(2011).

    [26] Zhu J, Stormer H L, Pfeiffer L N. Spin susceptibility of an ultra-low-density two-dimensional electron system[J]. Physical Review Letters, 90, 056805(2003).

    Tools

    Get Citation

    Copy Citation Text

    Hua-Yao TU, Meng LYU, Song-Ran ZHANG, Guo-Lin YU, Yan SUN, Ting-Ting KANG, Xin CHEN, Ning DAI. Spin-orbit coupling and Zeeman effect in HgCdTe inversion layer with interface microroughness[J]. Journal of Infrared and Millimeter Waves, 2020, 39(6): 684

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials and Devices

    Received: Jan. 15, 2020

    Accepted: --

    Published Online: Jan. 20, 2021

    The Author Email: Guo-Lin YU (yug@mail.sitp.ac.cn)

    DOI:10.11972/j.issn.1001-9014.2020.06.004

    Topics