Laser & Infrared, Volume. 54, Issue 6, 843(2024)
Advances in the preparation of metal sulfide quantum dots by liquid phase ultrasonic method
[1] [1] Hu Long, Zhao Qian, Huang Shujuan, et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture[J]. Nature Communications, 2021, 12(1): 466-466.
[2] [2] Francesco Meinardi, Annalisa Colombo, Kirill A Velizhanin, et al. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix[J]. Nature Photonics, 2014, 8(5): 392-399.
[3] [3] Xin Tang, Matthew M. Ackerman, Menglu Chen, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nature Photonics, 2019, 13(4): 277-282.
[4] [4] Xu Leimeng, Li Jianhai, Cai Bo, et al. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes[J]. Nature communications, 2020, 11(1): 3902.
[5] [5] Gao Fei, Yang Weiqiang, Liu Xiuling, et al. Highly stable and luminescent silica-coated perovskite quantum dots at nanoscale-particle level via nonpolar solvent synthesis[J]. Chemical Engineering Journal, 2021, 407: 128001.
[6] [6] Xue Qi, Zhang Huijie, Zhu Minshen, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging[J]. Adv Mater, 2017, 29(15): 1604847.
[7] [7] Park Y S, Roh J, Diroll B T, et al. Colloidal quantum dot lasers[J]. Nature Reviews Materials, 2021, 6(5): 382-401.
[9] [9] Calabro R L, Yang Dongsheng, Kim D Y. Controlled nitrogen doping of graphene quantum dots through laser ablation in aqueous solutions for Photoluminescence and electrocatalytic applications[J]. ACS Applied Nano Materials, 2019, 2(11): 6948-59.
[10] [10] Kalita H, Palaparthy V S, Baghini M S, et al. Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties[J]. Carbon, 2020, 165: 9-17.
[11] [11] Palankar R, Medvedev N, Rong A, et al. Fabrication of quantum dot microarrays using electron beam lithography for applications in analyte sensing and cellular dynamics[J]. Acs Nano, 2013, 7(5): 4617-28.
[12] [12] Li Mengying, Ge Yingxin, Chen Qifan, et al. Hydrothermal synthesis of highly luminescent CdTe quantum dots by adjusting precursors' concentration and their conjunction with BSA as biological fluorescent probes[J]. Talanta, 2007, 72(1): 89-94.
[14] [14] Kwon W, Lee G, Do S, et al. Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials[J]. Small, 2014, 10(3): 506-13.
[15] [15] Lin Liping, Rong Mingcong, Lu Sisi, et al. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2, 4, 6-trinitrophenol in aqueous solution[J]. Nanoscale, 2015, 7(5): 1872-8.
[16] [16] Wang Jing, Fan Saiying, Xia Yi, et al. Room-temperature gas sensors based on ZnO nanorod/Au hybrids: Visible-light-modulated dual selectivity to NO2 and NH3[J]. J Hazard Mater, 2020, 381: 120919.
[17] [17] Kufer Dominik, Nikitskiy Ivan, Lasanta Tania, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors[J]. Advanced materials, 2015, 27(1): 176-80.
[18] [18] Wenjia Zhou, Yuequn Shang, F Pelayo Garca de Arquer, et al. Solution-processed upconversion photodetectors based on quantum dots[J]. Nature Electronics, 2020, 3(5): 251-258.
[19] [19] Matea Cristian T, Mocan Teodora, Tabaran Flaviu, et al. Quantum dots in imaging, drug delivery and sensor applications[J]. International Journal of Nanomedicine, 2017, 12: 5421-5431.
[21] [21] Zhou Liangliang, Sun Chuli, Li Xueming, et al. Tantalum disulfide quantum dots: preparation, structure, and properties[J]. Nanoscale Res. Lett., 2020, 15(1): 20.
[22] [22] Zhang Xiao, Lai Zhuangchai, Liu Zhengdong, et al. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots[J]. Angew Chem Int Ed Engl, 2015, 54(18): 5425-5428.
[23] [23] Zhang Jianfang, Zhu Tianyu, Wang Yan, et al. Self-assembly of 0D/2D homostructure for enhanced hydrogen evolution[J]. Materials Today, 2020, 36: 83-90.
[24] [24] Wang Yan, Liu Yang, Zhang Jianfang, et al. Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots[J]. Science Advances, 2017, 3(12): e1701500-e1701500.
[25] [25] Fu X, Ilanchezhiyan P, Mohan Kumar G, et al. Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation[J]. Nanoscale, 2017, 9(5): 1820-1826.
[26] [26] Xu Shengjie, Li Dian, Wu Peiyi. One-Pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction[J]. Advanced Functional Materials, 2015, 25(7): 1127-36.
[27] [27] Gopalakrishnan D, Damien D, Shaijumon M M. MoS2 Quantum Dot-interspersed exfoliated MoS2 nanosheets[J]. Acs Nano, 2014, 8(5): 5297-5303.
[28] [28] Wu Jingyuan, Zhang Xiaoyang, Ma Xiaodan, et al. High quantum-yield luminescent MoS2 quantum dots with variable light emission created via direct ultrasonic exfoliation of MoS2 nanosheets[J]. RSC Advances, 2015, 5(115): 95178-95182.
[29] [29] Ali J, Siddiqui G U, Choi K H, et al. Fabrication of blue luminescent MoS2 quantum dots by wet grinding assisted co-solvent sonication[J]. Journal of Luminescence, 2016, 169: 342-347.
[30] [30] Wan Jun, Du Xiao, Liu Enzhou, et al. Z-scheme visible-light-driven Ag3PO4 nanoparticle@MoS2 quantum dot/few-layered MoS2 nanosheet heterostructures with high efficiency and stability for photocatalytic selective oxidation[J]. Journal of Catalysis, 2017, 345: 281-294.
[31] [31] Khabiri G, Aboraia A M, Omar S, et al. The enhanced photocatalytic performance of SnS2@MoS2 QDs with highly-efficient charge transfer and visible light utilization for selective reduction of mythlen-blue[J]. Nanotechnology, 2020, 31(47): 475602.
[32] [32] Sunitha A P, Praveen P, Jayaraj M K, et al. Upconversion and downconversion photoluminescence and optical limiting in colloidal MoS2 nanostructures prepared by ultrasonication[J]. Optical Materials, 2018, 85: 61-70.
[33] [33] Ke Sunkui, Lai Youlin, Li Lihuang, et al. Molybdenum disulfide quantum dots attenuates endothelial-to-mesenchymal transition by activating TFEB-mediated lysosomal biogenesis[J]. ACS Biomater Sci. Eng., 2019, 5(2): 1057-1070.
[34] [34] Dai Wenhao, Dong Haifeng, Fugetsu B, et al. Tunable fabrication of molybdenum disulfide quantum dots for intracellular MicroRNA detection and multiphoton bioimaging[J]. Small, 2015, 11(33): 4158-4164.
[35] [35] Zhang Mingliang, Duo Fangfang, Lan Jihong, et al. Decoration engineering induced MoS2 QDs/BiOBr heterostructures for significantly enhancing visible light photocatalytic capability for the organic dyes and antibiotics removal[J]. Applied Surface Science, 2022, 583.
[36] [36] Zhong Yaping, Xue Fengfeng, Wei Peng, et al. Water-soluble MoS2 quantum dots for facile and sensitive fluorescence sensing of alkaline phosphatase activity in serum and live cells based on the inner filter effect[J]. Nanoscale, 2018, 10(45): 21298-21306.
[37] [37] Liu Yang, Liang Chenglu, Wu Jingjie, et al. Reflux pretreatment-mediated sonication: a new universal route to obtain 2D quantum dots[J]. Materials Today, 2019, 22: 17-24.
[38] [38] Dong Haifeng, Tang Songsong, Hao Yansong, et al. Fluorescent MoS2 quantum dots: ultrasonic preparation, Up-conversion and down-conversion bioimaging, and photodynamic therapy[J]. ACS Appl. Mater. Interfaces, 2016, 8(5): 3107-3114.
[39] [39] Nguyen T P, Sohn W, Oh J H, et al. Size-dependent properties of two-dimensional MoS2 and WS2[J]. The Journal of Physical Chemistry C, 2016, 120(18): 10078-10085.
[40] [40] Zhou Liyan, Yan Shancheng, Wu Han, et al. Facile sonication synthesis of WS2 quantum dots for photoelectrochemical performance[J]. Catalysts, 2017, 7(1): 18.
[41] [41] Long Hui, Tao Lili, Chiu Chunpang, et al. The WS2 quantum dot: preparation, characterization and its optical limiting effect in polymethylmethacrylate[J]. Nanotechnology, 2016, 27(41): 414005.
[42] [42] Bayat A, Saievar-Iranizad E. Synthesis of blue photoluminescent WS2 quantum dots via ultrasonic cavitation[J]. Journal of Luminescence, 2017, 185: 236-240.
[43] [43] Modi K H, Pataniya P M, Patel V, et al. Self-powered photodetector functionalized by SnS quantum dots[J]. Optical Materials, 2022, 129.
[44] [44] Kadeer K, Tursun Y, Dilinuer T, et al. Sonochemical preparation and photocatalytic properties of CdS QDs/Bi2WO6 3D heterojunction[J]. Ceramics International, 2018, 44(12): 13797-13805.
[45] [45] Hu Lianzhe, Zhang Qian, Gan Xiaoyan, et al. Switchable fluorescence of MoS2 quantum dots: a multifunctional probe for sensing of chromium (VI), ascorbic acid, and alkaline phosphatase activity[J]. Analytical and Bioanalytical Chemistry, 2018, 410(28): 7551-7557.
[46] [46] Zhang Jie, Wang Jie, Yan Tong, et al. InP/ZnSe/ZnS quantum dots with strong dual emissions: visible excitonic emission and near-infrared surface defect emission and their application in in vitro and in vivo bioimaging[J]. Journal of Materials Chemistry B, 2017, 5(41): 8152-8160.
Get Citation
Copy Citation Text
ZHANG Tai-wei, HU Kun, LI Guo-bin, XIA Yi-ping, YANG Ao, LI Xue-ming, TANG Li-bin, YANG Pei-zhi. Advances in the preparation of metal sulfide quantum dots by liquid phase ultrasonic method[J]. Laser & Infrared, 2024, 54(6): 843
Category:
Received: Nov. 6, 2023
Accepted: May. 21, 2025
Published Online: May. 21, 2025
The Author Email: TANG Li-bin (scitang@163.com)