APPLIED LASER, Volume. 44, Issue 5, 190(2024)
Research on Implementation and Application of Optical Neural Networks
[1] [1] STATISTA. Digital Economy Compass[R]. 2020.
[2] [2] MOORE G E. Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.[J]. IEEE Solid-State Circuits Society Newsletter, 2006, 11(3): 33-35.
[3] [3] GOMES W, KOKER A, STOVER P, et al. Ponte vecchio: A multi-tile 3D stacked processor for exascale computing[C]//[s. l.]: IEEE, 2022: 42-44.
[4] [4] WALDROP M M. The chips are down for Moore's law[J]. Nature, 2016, 530: 144-147.
[5] [5] JOUPPI N, KURIAN G, LI S, et al. Tpu v4: An optically reconfigurable supercomputer for machine learning with hardware support for embeddings[C]//Proceedings of the 50th Annual International Symposium on Computer Architecture [s.l.: s.n.]. 2023: 1-14.
[6] [6] CHEN T, DU Z, SUN N, et al. DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning[J]. ACM SIGPLAN Notices: A Monthly Publication of the Special Interest Group on Programming Languages, 2014, 49(4): 269-284.
[7] [7] WETZSTEIN G, OZCAN A, GIGAN S, et al. Inference in artificial intelligence with deep optics and photonics[J]. Nature, 2020, 588: 39-47.
[8] [8] BAI B W, YANG Q P, SHU H W, et al. Microcomb-based integrated photonic processing unit[J]. Nature Communications, 2023, 14(1): 66.
[9] [9] SHASTRI B J, TAIT A N, FERREIRA DE LIMA T, et al. Photonics for artificial intelligence and neuromorphic computing[J]. Nature Photonics, 2021, 15: 102-114.
[10] [10] KREUPL F. The carbon-nanotube computer has arrived[J]. Nature, 2013, 501: 495-496.
[12] [12] OKAMOTO A, TANAKA K, SAITO I. DNA logic gates[J]. Journal of the American Chemical Society, 2004, 126(30): 9458-9463.
[13] [13] ROY K, JAISWAL A, PANDA P. Towards spike-based machine intelligence with neuromorphic computing[J]. Nature, 2019, 575(7784): 607-617.
[14] [14] GOI E, ZHANG Q M, CHEN X, et al. Perspective on photonic memristive neuromorphic computing[J]. PhotoniX, 2020, 1(1): 3.
[15] [15] HUANG C R, DE LIMA T F, JHA A, et al. Giant Enhancement in Signal Contrast using Integrated All-Optical Nonlinear Thresholder[C]//2019 Optical Fiber Communications Conference and Exhibition (OFC). San Diego, CA, USA: IEEE, 2019: 1-3.
[16] [16] NAHMIAS M A, SHASTRI B J, TAIT A N, et al. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(5): 1800212.
[17] [17] AMIN R, GEORGE J K, SUN S, et al. ITO-based electro-absorption modulator for photonic neural activation function[J]. APL Materials, 2019, 7(8): 081112.
[18] [18] WILLIAMSON I A D, HUGHES T W, MINKOV M, et al. Reprogrammable electro-optic nonlinearactivation functions for optical neural networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(1): 7700412.
[19] [19] ROS C, STEGMAIER M, HOSSEINI P, et al. Integrated all-photonic non-volatile multi-level memory[J]. Nature Photonics, 2015, 9: 725-732.
[20] [20] CHENG Z G, ROS C, PERNICE W H P, et al. On-chip photonic synapse[J]. Science Advances, 2017, 3(9): e1700160.
[21] [21] FELDMANN J, YOUNGBLOOD N, WRIGHT C D, et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 2019, 569: 208-214.
[22] [22] FARHAT N H, PSALTIS D, PRATA A, et al. Optical implementation of the Hopfield model[J]. Applied Optics, 1985, 24(10): 1469.
[23] [23] LU T, XU X, WU S, et al. Neural network model using interpattern association[J]. Applied Optics, 1990, 29(2): 284-288.
[24] [24] PSALTIS D, BRADY D, GU X G, et al. Holography in artificial neural networks[J]. Nature, 1990, 343: 325-330.
[25] [25] LI H Y, QIAO Y, PSALTIS D. Optical network for real-time face recognition[J]. Applied Optics, 1993, 32(26): 5026-5035.
[26] [26] ZHOU H L, DONG J J, CHENG J W, et al. Photonic matrix multiplication lights up photonic accelerator and beyond[J]. Light, Science & Applications, 2022, 11(1): 30.
[27] [27] ZHOU H Q, ZHAO C L, HE C, et al. Optical computing metasurfaces: Applications and advances[J]. Nanophotonics, 2024, 13(4): 419-441.
[28] [28] CHANG J L, SITZMANN V, DUN X, et al. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification[J]. Scientific Reports, 2018, 8(1): 12324.
[29] [29] LIN X, RIVENSON Y, YARDIMCI N T, et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 2018, 361: 1004-1008.
[30] [30] CHENG Z G, ROS C, YOUNGBLOOD N, et al. Device-level photonic memories and logic applications using phase-change materials[J]. Advanced Materials, 2018, 30(32): e1802435.
[31] [31] ROS C, YOUNGBLOOD N, CHENG Z G, et al. In-memory computing on a photonic platform[J]. Science Advances, 2019, 5(2): eaau5759.
[32] [32] CHENG Z G, MILNE T, SALTER P, et al. Antimony thin films demonstrate programmable optical nonlinearity[J]. Science Advances, 2021, 7(1): eabd7097.
[33] [33] MILLER D A B. Self-configuring universal linear optical component[J]. Photonics Research, 2013, 1(1): 1.
[34] [34] SHEN Y C, HARRIS N C, SKIRLO S, et al. Deep learning with coherent nanophotonic circuits[J]. Nature Photonics, 2017, 11: 441-446.
[35] [35] HUGHES T W, MINKOV M, SHI Y, et al. Training of photonic neural networks through in situ backpropagation and gradient measurement[J]. Optica, 2018, 5(7): 864.
[36] [36] FELDMANN J, YOUNGBLOOD N, KARPOV M, et al. Parallel convolutional processing usingan integrated photonic tensor core[J]. Nature, 2021, 589: 52-58.
Get Citation
Copy Citation Text
Wu Xuechen, Zhu Zhongxia, Wu Yang. Research on Implementation and Application of Optical Neural Networks[J]. APPLIED LASER, 2024, 44(5): 190
Category:
Received: May. 13, 2024
Accepted: Dec. 13, 2024
Published Online: Dec. 13, 2024
The Author Email: Zhongxia Zhu (185239989@qq.com)