Acta Photonica Sinica, Volume. 51, Issue 10, 1026002(2022)
Advances in Electrically Tunable Metasurfaces(Invited)
[1] QIU C W, ZHANG T, HU G et al. Quo vadis, metasurfaces?[J]. Nano Letters, 21, 5461-5474(2021).
[2] ZHANG L, MEI S, HUANG K et al. Advances in full control of electromagnetic waves with metasurfaces[J]. Advanced Optical Materials, 4, 818-833(2016).
[3] ZUBRITSKAYA I, MACCAFERRI N, INCHAUSTI EZEIZA X et al. Magnetic control of the chiroptical plasmonic surfaces[J]. Nano Letters, 18, 302-307(2018).
[4] CHRISTOFI A, KAWAGUCHI Y, ALU A et al. Giant enhancement of faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces[J]. Optics Letters, 43, 1838-1841(2018).
[5] POGNA E A A, CELEBRANO M, MAZZANTI A et al. Ultrafast, all optically reconfigurable, nonlinear nanoantenna[J]. ACS Nano, 15, 11150-11157(2021).
[6] LIU S, HAN J, CHENG X et al. Mechanism of all-optical spatial light modulation in graphene dispersion[J]. The Journal of Physical Chemistry C, 125, 16598-16604(2021).
[7] SCHOEN D T, HOLSTEEN A L, BRONGERSMA M L. Probing the electrical switching of a memristive optical antenna by STEM EELS[J]. Nature Communications, 7, 12162(2016).
[8] FRANKLIN D, FRANK R, WU S T et al. Actively addressed single pixel full-colour plasmonic display[J]. Nature Communications, 8, 15209(2017).
[9] KIM S H, YOU J B, HA Y G et al. Thermo-optic control of the longitudinal radiation angle in a silicon-based optical phased array[J]. Optics Letters, 44, 411-414(2019).
[10] KIM S J, YUN H, CHOI S et al. Dynamic phase-change metafilm absorber for strong designer modulation of visible light[J]. Nanophotonics, 10, 713-725(2020).
[11] ZOU J, YANG Q, HSIANG E L et al. Fast-response liquid crystal for spatial light modulator and LiDAR applications[J]. Crystals, 11, 93(2021).
[12] XING Z, FAN W, HUANG D et al. High laser damage threshold liquid crystal optical switch based on a gallium nitride transparent electrode[J]. Optics Letters, 45, 3537-3540(2020).
[13] WUTTIG M, BHASKARAN H, TAUBNER T. Phase-change materials for non-volatile photonic applications[J]. Nature Photonics, 11, 465-476(2017).
[14] WANG Y, LANDREMAN P, SCHOEN D et al. Electrical tuning of phase-change antennas and metasurfaces[J]. Nature Nanotechnology, 16, 667-672(2021).
[15] ZHANG B, WANG L, CHEN F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications[J]. Laser & Photonics Reviews, 14, 1900407(2020).
[16] HONARDOOST A, ABDELSALAM K, FATHPOUR S. Rejuvenating a versatile photonic material: thin-film lithium niobate[J]. Laser & Photonics Reviews, 14, 2000088(2020).
[17] ZHELUDEV N I, PLUM E. Reconfigurable nanomechanical photonic metamaterials[J]. Nature Nanotechnology, 11, 16-22(2016).
[18] MALEK S C, EE H S, AGARWAL R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Letters, 17, 3641-3645(2017).
[19] EE H S, AGARWAL R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 16, 2818-2823(2016).
[20] PALIK E D[M]. Handbook of optical constants of solids(1985).
[21] HUANG Y W, LEE H W, SOKHOYAN R et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 16, 5319-5325(2016).
[22] ABB M, ALBELLA P, AIZPURUA J et al. All-optical control of a single plasmonic nanoantenna-ITO hybrid[J]. Nano Letters, 11, 2457-2463(2011).
[23] ALAM M Z, DE LEON I, BOYD R W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region[J]. Science, 352, 795-797(2016).
[24] FEIGENBAUM E, DIEST K, ATWATER H A. Unity-order index change in transparent conducting oxides at visible frequencies[J]. Nano Letters, 10, 2111-2116(2010).
[25] YI F, SHIM E, ZHU A Y et al. Voltage tuning of plasmonic absorbers by indium tin oxide[J]. Applied Physics Letters, 102, 221102(2013).
[26] THYAGARAJAN K, SOKHOYAN R, ZORNBERG L et al. Millivolt modulation of plasmonic metasurface optical response via ionic conductance[J]. Advanced Materials, 29, 1701044(2017).
[27] PARK J, KANG J H, LIU X et al. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers[J]. Scientific Reports, 5, 15754(2015).
[28] PARK J, KANG J H, KIM S J et al. Dynamic reflection phase and polarization control in metasurfaces[J]. Nano Letters, 17, 407-413(2017).
[29] SHIRMANESH G K, SOKHOYAN R, WU P C et al. Electro-optically tunable multifunctional metasurfaces[J]. ACS Nano, 14, 6912-6920(2020).
[30] PARK J, JEONG B G, KIM S I et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications[J]. Nature Nanotechnology, 16, 69-76(2021).
[31] SHIRMANESH G K, SOKHOYAN R, PALA R A et al. Dual-gated active metasurface at 1550 nm with wide (>300 degrees ) phase tunability[J]. Nano Letters, 18, 2957-2963(2018).
[32] HOWES A, WANG W, KRAVCHENKO I et al. Dynamic transmission control based on all-dielectric huygens metasurfaces[J]. Optica, 5, 787-792(2018).
[33] VASUDEV A P, KANG J H, PARK J et al. Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material[J]. Optics Express, 21, 26387-26397(2013).
[34] ZHAOLIN L, WANGSHI Z, KAIFENG S. Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides[J]. IEEE Photonics Journal, 4, 735-740(2012).
[35] GEORGE D, LI L, LOWELL D et al. Electrically tunable diffraction efficiency from gratings in Al-doped ZnO[J]. Applied Physics Letters, 110, 071110(2017).
[36] WOOD M G, CAMPIONE S, PARAMESWARAN S et al. Gigahertz speed operation of epsilon-near-zero silicon photonic modulators[J]. Optica, 5, 233-236(2018).
[37] ZHAO H, ZHANG R, CHORSI H T et al. Gate-tunable metafilm absorber based on indium silicon oxide[J]. Nanophotonics, 8, 1803-1810(2019).
[38] LIU C, BAI Y, ZHOU J et al. A review of graphene plasmons and its combination with metasurface[J]. Journal of the Korean Ceramic Society, 54, 349-365(2017).
[39] JU L, GENG B, HORNG J et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 6, 630-4(2011).
[40] SHERROTT M C, HON P W C, FOUNTAINE K T et al. Experimental demonstration of >230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces[J]. Nano Letters, 17, 3027-3034(2017).
[41] DABIDIAN N, DUTTA GUPTA S, KHOLMANOV I et al. Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces[J]. Nano Letters, 16, 3607-3615(2016).
[42] GAO W, SHU J, REICHEL K et al. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures[J]. Nano Letters, 14, 1242-1248(2014).
[43] YAO Y, KATS M A, GENEVET P et al. Broad electrical tuning of graphene-loaded plasmonic antennas[J]. Nano Letters, 13, 1257-1264(2013).
[44] EMANI N K, CHUNG T F, NI X et al. Electrically tunable damping of plasmonic resonances with graphene[J]. Nano Letters, 12, 5202-5206(2012).
[45] LEE S H, CHOI M, KIM T T et al. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials, 11, 936-941(2012).
[46] ZENG B, HUANG Z, SINGH A et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging[J]. Light: Science & Applications, 7, 51(2018).
[47] KIM S, JANG M S, BRAR V W et al. Electronically tunable perfect absorption in graphene[J]. Nano Letters, 18, 971-979(2018).
[48] HAN S, KIM S, KIM S et al. Complete complex amplitude modulation with electronically tunable graphene plasmonic metamolecules[J]. ACS Nano, 14, 1166-1175(2020).
[49] SUN Z, HUANG F, FU Y. Graphene-based active metasurface with more than 330° phase tunability operating at mid-infrared spectrum[J]. Carbon, 173, 512-520(2021).
[50] BRAR V W, SHERROTT M C, JANG M S et al. Electronic modulation of infrared radiation in graphene plasmonic resonators[J]. Nature Communications, 6, 7032(2015).
[51] FANG Z, WANG Y, SCHLATHER A E et al. Active tunable absorption enhancement with graphene nanodisk arrays[J]. Nano Letters, 14, 299-304(2014).
[52] YAO Y, SHANKAR R, KATS M A et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators[J]. Nano Letters, 14, 6526-6532(2014).
[53] ZHANG X, BIEKERT N, CHOI S et al. Dynamic photochemical and optoelectronic control of photonic fano resonances via monolayer MoS2 trions[J]. Nano Letters, 18, 957-963(2018).
[54] LEE B, LIU W, NAYLOR C H et al. Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice[J]. Nano Letters, 17, 4541-4547(2017).
[55] LIU W, WANG Y, ZHENG B et al. Observation and active control of a collective polariton mode and polaritonic band gap in few-layer WS2 strongly coupled with plasmonic lattices[J]. Nano Letters, 20, 790-798(2020).
[56] NI P, DE LUNA BUGALLO A, ARELLANO ARREOLA V M et al. Gate-tunable emission of exciton–plasmon polaritons in hybrid MoS2-gap-mode metasurfaces[J]. ACS Photonics, 6, 1594-1601(2019).
[57] GROEP J, SONG J-H, CELANO U et al. Exciton resonance tuning of an atomically thin lens[J]. Nature Photonics, 14, 426-430(2020).
[58] CHEN H T, PADILLA W J, ZIDE J M et al. Active terahertz metamaterial devices[J]. Nature, 444, 597-600(2006).
[59] JUN Y C, GONZALES E, RENO J L et al. Active tuning of mid-infrared metamaterials by electrical control of carrier densities[J]. Optics Express, 20, 1903-1911(2012).
[60] CHAN W L, CHEN H T, TAYLOR A J et al. A spatial light modulator for terahertz beams[J]. Applied Physics Letters, 94, 213511(2009).
[61] PARK J, KANG J H, LIU X et al. Dynamic thermal emission control with InAs-based plasmonic metasurfaces[J]. Science Advances, 4, eaat3163(2018).
[62] WU P C, PALA R A, KAFAIE SHIRMANESH G et al. Dynamic beam steering with all-dielectric electro-optic Ⅲ-Ⅴ multiple-quantum-well metasurfaces[J]. Nature Communications, 10, 3654(2019).
[63] LEE J, JUNG S, CHEN P Y et al. Ultrafast electrically tunable polaritonic metasurfaces[J]. Advanced Optical Materials, 2, 1057-1063(2014).
[64] BENZ A, MONTAñO I, KLEM J F et al. Tunable metamaterials based on voltage controlled strong coupling[J]. Applied Physics Letters, 103, 263116(2013).
[65] ANDRIENKO D. Introduction to liquid crystals[J]. Journal of Molecular Liquids, 267, 520-541(2018).
[66] KOSSYREV P A, YIN A, CLOUTIER S G et al. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix[J]. Nano Letters, 5, 1978-1981(2005).
[67] DECKER M, KREMERS C, MINOVICH A et al. Electro-optical switching by liquid-crystal controlled metasurfaces[J]. Optics Express, 21, 8879-8885(2013).
[68] LEE Y U, KIM J, WOO J H et al. Electro-optic switching in phase-discontinuity complementary metasurface twisted nematic cell[J]. Optics Express, 22, 20816-20827(2014).
[69] CHEN K P, YE S C, YANG C Y et al. Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals[J]. Optics Express, 24, 16815-16821(2016).
[70] BUCHNEV O, OU J Y, KACZMAREK M et al. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell[J]. Optics Express, 21, 1633-1638(2013).
[71] BUCHNEV O, PODOLIAK N, KACZMAREK M et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch[J]. Advanced Optical Materials, 3, 674-679(2015).
[72] XIE Z W, YANG J H, VASHISTHA V et al. Liquid-crystal tunable color filters based on aluminum metasurfaces[J]. Optics Express, 25, 30764-30770(2017).
[73] KOMAR A, FANG Z, BOHN J et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals[J]. Applied Physics Letters, 110, 071109(2017).
[74] WANG R, HE S, CHEN S et al. Electrically driven generation of arbitrary vector vortex beams on the hybrid-order poincare sphere[J]. Optics Letters, 43, 3570-3573(2018).
[75] SUN M, XU X, SUN X W et al. Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals[J]. Scientific Reports, 9, 8673(2019).
[76] LI S Q, XU X, VEETIL R M et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 364, 1087-1090(2019).
[77] BAZZAN M, SADA C. Optical waveguides in lithium niobate: recent developments and applications[J]. Applied Physics Reviews, 2, 040603(2015).
[78] HE L, ZHANG M, SHAMS-ANSARI A et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits[J]. Optics Letters, 44, 2314(2019).
[79] KRASNOKUTSKA I, TAMBASCO J-L J, LI X et al. Ultra-low loss photonic circuits in lithium niobate on insulator[J]. Optics Express, 26, 897(2018).
[80] ZHU D, SHAO L, YU M et al. Integrated photonics on thin-film lithium niobate[J]. Advances in Optics and Photonics, 13, 242-352(2021).
[81] WEISS A, FRYDENDAHL C, BAR-DAVID J et al. Tunable metasurface using thin-film lithium niobate in the telecom regime[J]. ACS Photonics, 9, 605-612(2022).
[82] WEIGAND H, VOGLER NEULING V V, ESCALé M R et al. Enhanced electro-optic modulation in resonant metasurfaces of lithium niobate[J]. ACS Photonics, 8, 3004-3009(2021).
[83] GAO B, REN M, WU W et al. Electro-optic lithium niobate metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 64, 240362(2021).
[84] KLOPFER E, DAGLI S, BARTON D et al. High-quality-factor silicon-on-lithium niobate metasurfaces for electro-optically reconfigurable wavefront shaping[J]. Nano Letters, 22, 1703-1709(2022).
[85] SUN X, LIU G, YU H et al. Design and theoretical characterization of high speed metasurface modulators based on electro-optic polymer[J]. Optics Express, 29, 9207-9216(2021).
[86] QIU C, WANG B, ZHANG N et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity[J]. Nature, 577, 350-354(2020).
[87] LIU X, TAN P, MA X et al. Ferroelectric crystals with giant electro-optic property enabling ultracompact Q-switches[J]. Science, 376, 371-377(2022).
[88] ZHU W M, LIU A Q, ZHANG X M et al. Switchable magnetic metamaterials using micromachining processes[J]. Advanced Materials, 23, 1792-1796(2011).
[89] ZHU W M, LIU A Q, ZHANG W et al. Polarization dependent state to polarization independent state change in THz metamaterials[J]. Applied Physics Letters, 99, 221102(2011).
[90] OU J Y, PLUM E, ZHANG J et al. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared[J]. Nature Nanotechnology, 8, 252-255(2013).
[91] LIN Y S, LEE C. Tuning characteristics of mirrorlike T-shape terahertz metamaterial using out-of-plane actuated cantilevers[J]. Applied Physics Letters, 104, 251914(2014).
[92] PITCHAPPA P, PEI HO C, KROPELNICKI P et al. Micro-electro-mechanically switchable near infrared complementary metamaterial absorber[J]. Applied Physics Letters, 104, 201114(2014).
[93] HOLSTEEN A L, RAZA S, FAN P et al. Purcell effect for active tuning of light scattering from semiconductor optical antennas[J]. Science, 358, 1407-1410(2017).
[94] MAO Y, PAN Y, ZHANG W et al. Multi-direction-tunable three-dimensional meta-atoms for reversible switching between midwave and long-wave infrared regimes[J]. Nano Letters, 16, 7025-7029(2016).
[95] SHE A, ZHANG S, SHIAN S et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 4, eaap9957(2018).
[96] ARBABI E, ARBABI A, KAMALI S M et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 9, 812(2018).
[97] ZHAO X, SCHALCH J, ZHANG J et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies[J]. Optica, 5, 303-310(2018).
[98] MANJAPPA M, PITCHAPPA P, SINGH N et al. Reconfigurable MEMS fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies[J]. Nature Communications, 9, 4056(2018).
[99] HOLSTEEN A L, CIHAN A F, BRONGERSMA M L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces[J]. Science, 365, 257-260(2019).
[100] ZHANG X, KWON K, HENRIKSSON J et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR[J]. Nature, 603, 253-258(2022).
[101] KAUL L, ZLOT R, BOSSE M. Continuous-time three-dimensional mapping for micro aerial vehicles with a passively actuated rotating laser scanner[J]. Journal of Field Robotics, 33, 103-132(2016).
[102] ROYO S, BALLESTA G M. An overview of lidar imaging systems for autonomous vehicles[J]. Applied Sciences, 9, 4093(2019).
[103] KIM I, MARTINS R J, JANG J et al. Nanophotonics for light detection and ranging technology[J]. Nature Nanotechnology, 16, 508-524(2021).
[104] GAO D, LI T, SUN Y et al. Latest developments and trends of space laser communication[J]. Chinese Optics, 011, 901-913(2018).
[105] MA W, LIU Z, KUDYSHEV Z A et al. Deep learning for the design of photonic structures[J]. Nature Photonics, 15, 77-90(2020).
[106] LI L, ZHAO H, LIU C et al. Intelligent metasurfaces: control, communication and computing[J]. eLight, 2, 7(2022).
[107] MA Q, GAO W, XIAO Q et al. Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform[J]. eLight, 2, 11(2022).
[108] ZHU R, WANG J, QIU T et al. Remotely mind-controlled metasurface via brainwaves[J]. eLight, 2, 10(2022).
Get Citation
Copy Citation Text
Lei ZHANG, Yunfan XU, Bobo DU, Huimin DING, Xiaoyong WEI, Zhuo XU. Advances in Electrically Tunable Metasurfaces(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1026002
Category:
Received: Jun. 23, 2022
Accepted: Sep. 14, 2022
Published Online: Nov. 30, 2022
The Author Email: Lei ZHANG (eiezhanglei@xjtu.edu.cn)