Chinese Journal of Lasers, Volume. 50, Issue 7, 0708003(2023)
Review on Ultra-Long Distance Propagation of Femtosecond Laser Pulses for Remote Sensing Applications
[1] Golubtsov I S, Kosareva O G. Influence of various physical factors on the generation of conical emission in the propagation of high-power femtosecond laser pulses in air[J]. Journal of Optical Technology, 69, 462(2002).
[2] Bergé L, Skupin S, Méjean G et al. Supercontinuum emission and enhanced self-guiding of infrared femtosecond filaments sustained by third-harmonic generation in air[J]. Physical Review E, 71, 016602(2005).
[3] Ferray M, L'Huillier A, Li X F et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 21, L31-L35(1988).
[4] D'Amico C, Houard A, Franco M et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air[J]. Physical Review Letters, 98, 235002(2007).
[5] Rodriguez M, Sauerbrey R, Wille H et al. Triggering and guiding megavolt discharges by use of laser-induced ionized filaments[J]. Optics Letters, 27, 772-774(2002).
[6] Kasparian J, Rodriguez M, Méjean G et al. White-light filaments for atmospheric analysis[J]. Science, 301, 61-64(2003).
[7] Luo Q, Xu H L, Hosseini S A et al. Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy[J]. Applied Physics B, 82, 105-109(2006).
[8] Chin S L, Xu H L, Luo Q et al. Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source[J]. Applied Physics B, 95, 1-12(2009).
[9] Liu Y, Houard A, Prade B et al. Terahertz radiation source in air based on bifilamentation of femtosecond laser pulses[J]. Physical Review Letters, 99, 135002(2007).
[10] Liu J L, Dai J M, Chin S L et al. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases[J]. Nature Photonics, 4, 627-631(2010).
[11] Rohwetter P, Kasparian J, Stelmaszczyk K et al. Laser-induced water condensation in air[J]. Nature Photonics, 4, 451-456(2010).
[12] Ju J J, Liu J S, Wang C et al. Laser-filamentation-induced condensation and snow formation in a cloud chamber[J]. Optics Letters, 37, 1214-1216(2012).
[13] Braun A, Korn G, Liu X et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 20, 73-75(1995).
[14] Nibbering E T, Curley P F, Grillon G et al. Conical emission from self-guided femtosecond pulses in air[J]. Optics Letters, 21, 62-65(1996).
[15] La Fontaine B, Vidal F, Jiang Z et al. Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air[J]. Physics of Plasmas, 6, 1615-1621(1999).
[16] Méchain G, Couairon A, André Y B et al. Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization[J]. Applied Physics B, 79, 379-382(2004).
[17] Rodriguez M, Bourayou R, Méjean G et al. Kilometer-range nonlinear propagation of femtosecond laser pulses[J]. Physical Review E, 69, 036607(2004).
[18] Yang H, Zhang J, Yu W et al. Long plasma channels generated by femtosecond laser pulses[J]. Physical Review E, 65, 016406(2002).
[19] Yang H, Zhang J, Li Y J et al. Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air[J]. Physical Review E, 66, 016406(2002).
[20] Yang H, Zhang J, Zhang J et al. Third-order harmonic generation by self-guided femtosecond pulses in air[J]. Physical Review E, 67, 015401(2003).
[21] Xi T T, Lu X, Zhang J. Interaction of light filaments generated by femtosecond laser pulses in air[J]. Physical Review Letters, 96, 025003(2006).
[22] Hao Z Q, Zhang J, Zhang Z et al. Characteristics of multiple filaments generated by femtosecond laser pulses in air: prefocused versus free propagation[J]. Physical Review E, 74, 066402(2006).
[23] Hao Z Q, Zhang J, Lu X et al. Spatial evolution of multiple filaments in air induced by femtosecond laser pulses[J]. Optics Express, 14, 773-778(2006).
[24] Hao Z Q, Zhang J, Xi T T et al. Optimization of multiple filamentation of femtosecond laser pulses in air using a pinhole[J]. Optics Express, 15, 16102-16109(2007).
[25] Hao Z Q, Salamé R, Lascoux N et al. Multiple filamentation of non-uniformly focused ultrashort laser pulses[J]. Applied Physics B, 94, 243-247(2009).
[26] Liu W W, Xue J Y, Su Q et al. Research progress on ultrafast laser filamentation[J]. Chinese Journal of Lasers, 47, 0500003(2020).
[27] Gao H, Zhao J Y, Liu W W. Control of multiple filamentation induced by ultrafast laser pulses[J]. Optics and Precision Engineering, 21, 598-607(2013).
[28] Luo Q, Hosseini S A, Liu W W et al. Effect of beam diameter on the propagation of intense femtosecond laser pulses[J]. Applied Physics B, 80, 35-38(2005).
[29] Sun X D, Zeng T, Liu W W et al. Power dependent filamentation of a femtosecond laser pulse in air by focusing with an axicon[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 094004(2015).
[30] Liu W, Chin S L, Kosareva O et al. Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol)[J]. Optics Communications, 225, 193-209(2003).
[31] Liu W, Gravel J F, Théberge F et al. Background Reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air[J]. Applied Physics B, 80, 857-860(2005).
[32] Liu Y, Wen Q, Xu S et al. Pulse characterization during femtosecond laser filamentation in air by two-photon fluorescence measurement[J]. Applied Physics B, 105, 825-831(2011).
[33] Théberge F, Liu W W, Simard P T et al. Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing[J]. Physical Review E, 74, 036406(2006).
[34] Bernhardt J, Liu W, Théberge F et al. Spectroscopic analysis of femtosecond laser plasma filament in air[J]. Optics Communications, 281, 1268-1274(2008).
[35] Zhao J Y, Chu W, Guo L J et al. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air[J]. Scientific Reports, 4, 1-7(2014).
[36] Zhao J Y, Liu W W, Li S C et al. Clue to a thorough understanding of terahertz pulse generation by femtosecond laser filamentation[J]. Photonics Research, 6, 296-306(2018).
[37] Zhang K J, Liu L, Zeng Q W et al. Influence of different scattering medium on propagation characteristics to femtosecond laser pulses[J]. Acta Physica Sinica, 68, 194207(2019).
[38] Zeng Q W, Liu L, Zhang K J et al. Numerical investigation on the influence of water vapor ionization on the dynamic and energy deposition of femtosecond ultraviolet laser filamentation in air[J]. Applied Sciences, 9, 4201(2019).
[39] Zeng Q W, Zhang Y, Lei H C et al. Microphysical characteristics of precipitation during pre-monsoon, monsoon, and post-monsoon periods over the South China Sea[J]. Advances in Atmospheric Sciences, 36, 1103-1120(2019).
[40] Zeng Q W, Liu L, Gao T C et al. Study on the height distribution of atmospheric nonlinear refractive index with a theoretical calculation model[J]. Journal of Nonlinear Optical Physics & Materials, 27, 1850044(2018).
[41] Zeng Q W, Liu L, Zhang K J et al. Nonlinear energy deposition of filamentation with femtosecond Airy laser beams in water[J]. Modern Physics Letters B, 33, 1950339(2019).
[42] Zeng Q W, Gao T C, Liu L et al. Advances in mechanism research of femtosecond laser filamentation induced hydrometeors formation[J]. Infrared and Laser Engineering, 48, 0406002(2019).
[43] Zeng W Q, Liu L, Gao C T et al. Nonlinear energy deposition of femtosecond laser filamentation in the laser-induced snowfall formation[J]. Proceedings of SPIE, 11046, 1104623(2019).
[44] Zeng W Q, Liu L, Ju J J et al. Numerical investigation on characteristics of filamentation by intense femtosecond positive temporal Airy pulses[J]. Proceedings of SPIE, 11455, 114554S(2020).
[45] Zeng Q W, Liu L, Ju J J et al. Numerical investigation on the heat deposition characteristics of femtosecond laser pulses undergoing multiple filaments[J]. Physica Scripta, 95, 085605(2020).
[46] Zeng Q W, Liu L, Hu S et al. Nonlinear propagation of intense femtosecond laser pulses in a foggy and cloudy environment[J]. Acta Optica Sinica, 40, 1519001(2020).
[47] Sun H Y, Liu J S, Wang C et al. Laser filamentation induced air-flow motion in a diffusion cloud chamber[J]. Optics Express, 21, 9255-9266(2013).
[48] Ju J J, Liu J S, Wang C et al. Effects of initial humidity and temperature on laser-filamentation-induced condensation and snow formation[J]. Applied Physics B, 110, 375-380(2013).
[49] Ju J J, Sun H Y, Sridharan A et al. Laser-filament-induced snow formation in a subsaturated zone in a cloud chamber: experimental and theoretical study[J]. Physical Review E, 88, 062803(2013).
[50] Sun H Y, Liu Y H, Liu J S et al. Femtosecond laser filament-assisted AgI-type pyrotechnic nucleant-induced water condensation in cloud chamber[J]. Optics Express, 26, 29687-29699(2018).
[51] Ju J J, Sun H Y, Hu X K et al. Temporal evolution of condensation and precipitation induced by a 22-TW laser[J]. Optics Express, 26, 2785-2793(2018).
[52] Ju J J, Liu J S, Sun H Y et al. Physical mechanism and research progress of femtosecond laser based artificial atmospheric modulation[J]. Chinese Journal of Lasers, 46, 0508004(2019).
[53] Hu X K, Ju J J, Li R X et al. Femtosecond laser-induced 0.3-2.0 μm aerosol formation[J]. Chinese Journal of Lasers, 46, 0308001(2019).
[54] Sun H Y, Liu Y H, Liu J S et al. Sub-picosecond chirped laser pulse-induced airflow and water condensation in a cloud chamber[J]. Chinese Optics Letters, 16, 061403(2018).
[55] Liu Y H, Sun H Y, Ju J J et al. Vortices formation induced by femtosecond laser filamentation in a cloud chamber filled with air and helium[J]. Chinese Optics Letters, 14, 031401(2016).
[56] Liang H, Sun H Y, Liu Y H et al. Chirp control of femtosecond laser-filamentation-induced snow formation in a cloud chamber[J]. Chinese Optics Letters, 13, 033201(2015).
[57] Liu Y H, Sun H Y, Liu J S et al. Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases[J]. Optics Express, 24, 7364-7373(2016).
[58] Ju J J, Liu J S, Liang H et al. Femtosecond laser filament induced condensation and precipitation in a cloud chamber[J]. Scientific Reports, 6, 1-10(2016).
[59] Gravel J F, Luo Q, Boudreau D et al. Sensing of halocarbons using femtosecond laser-induced fluorescence[J]. Analytical Chemistry, 76, 4799-4805(2004).
[60] Xu H L, Chin S L. Femtosecond laser filamentation for atmospheric sensing[J]. Sensors, 11, 32-53(2011).
[61] Xu H L, Cheng Y, Chin S L et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 9, 275-293(2015).
[62] Tzortzakis S, Franco M A, André Y B et al. Formation of a conducting channel in air by self-guided femtosecond laser pulses[J]. Physical Review E, 60, R3505-R3507(1999).
[63] Polynkin P, Kolesik M, Wright E M et al. Experimental tests of the new paradigm for laser filamentation in gases[J]. Physical Review Letters, 106, 153902(2011).
[64] Polynkin P, Kolesik M, Roberts A et al. Generation of extended plasma channels in air using femtosecond Bessel beams[J]. Optics Express, 16, 15733-15740(2008).
[65] Yu J, Mondelain D, Kasparian J et al. Sonographic probing of laser filaments in air[J]. Applied Optics, 42, 7117-7120(2003).
[66] Hao Z Q, Zhang J, Yu J. Acoustic diagnostics of plasma channels in air induced by intense femtosecond laser pulses[J]. Physics, 33, 443-445(2004).
[67] Chin S L, Yergeau F, Lavigne P. Tunnel ionisation of Xe in an ultra-intense CO2 laser field (1014 W cm-2) with multiple charge creation[J]. Journal of Physics B: Atomic and Molecular Physics, 18, L213-L215(1985).
[68] Dubietis A, Gaizauskas E, Tamosauskas G et al. Light filaments without self-channeling[J]. Physical Review Letters, 92, 253903(2004).
[69] Liu J S, Duan Z L, Zeng Z N et al. Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air[J]. Physical Review E, 72, 026412(2005).
[70] Clark T R, Milchberg H M. Time- and space-resolved density evolution of the plasma waveguide[J]. Physical Review Letters, 78, 2373-2376(1997).
[71] Chien C Y, La Fontaine B, Desparois A et al. Single-shot chirped-pulse spectral interferometry used to measure the femtosecond ionization dynamics of air[J]. Optics Letters, 25, 578-580(2000).
[72] Griem H R. Plasma spectroscopy[J]. New York: McGraw-Hill(1964).
[73] Tzortzakis S, Méchain G, Patalano G et al. Coherent subterahertz radiation from femtosecond infrared filaments in air[J]. Optics Letters, 27, 1944-1946(2002).
[74] Henin S, Petit Y, Kasparian J et al. Saturation of the filament density of ultrashort intense laser pulses in air[J]. Applied Physics B, 100, 77-84(2010).
[75] Ettoumi W, Kasparian J, Wolf J P. Laser filamentation as a new phase transition universality class[J]. Physical Review Letters, 114, 063903(2015).
[76] Xu S Q, Sun X D, Zeng B et al. Simple method of measuring laser peak intensity inside femtosecond laser filament in air[J]. Optics Express, 20, 299-307(2012).
[77] Daigle J F, Jaroń-Becker A, Hosseini S et al. Intensity clamping measurement of laser filaments in air at 400 and 800 nm[J]. Physical Review A, 82, 023405(2010).
[78] Sun X D, Xu S Q, Zhao J Y et al. Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air[J]. Optics Express, 20, 4790-4795(2012).
[79] Li Y T, Xi T T, Hao Z Q et al. Oval-like hollow intensity distribution of tightly focused femtosecond laser pulses in air[J]. Optics Express, 15, 17973-17979(2007).
[80] Xi T T, Lu X, Zhang J. Spatiotemporal moving focus of long femtosecond-laser filaments in air[J]. Physical Review E, 78, 055401(2008).
[81] Dicaire I, Jukna V, Praz C et al. Spaceborne laser filamentation for atmospheric remote sensing[J]. Laser & Photonics Reviews, 10, 481-493(2016).
[82] Xu X M, Taha T. Parallel split-step Fourier methods for nonlinear Schrödinger-type equations[J]. Journal of Mathematical Modelling and Algorithms, 2, 185-201(2003).
[83] Taha T R, Xu X M. Parallel split-step Fourier methods for the coupled nonlinear Schrödinger type equations[J]. The Journal of Supercomputing, 32, 5-23(2005).
[85] Ma C L, Jia M Z, Lin W B. Parallel simulations of femtosecond laser pulses propagation in air based on OpenMP[J]. High Power Laser and Particle Beams, 27, 111002(2015).
[86] Mauger S, Colin de Verdière G, Bergé L et al. GPU accelerated fully space and time resolved numerical simulations of self-focusing laser beams in SBS-active media[J]. Journal of Computational Physics, 235, 606-625(2013).
[87] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 441, 47-189(2007).
[88] Couairon A, Brambilla E, Corti T et al. Practitioner’s guide to laser pulse propagation models and simulation[J]. The European Physical Journal Special Topics, 199, 5-76(2011).
[89] Fujii T, Miki M, Goto N et al. Leader effects on femtosecond-laser-filament-triggered discharges[J]. Physics of Plasmas, 15, 013107(2008).
[90] Xu S, Bernhardt J, Sharifi M et al. Intensity clamping during laser filamentation by TW level femtosecond laser in air and argon[J]. Laser Physics, 22, 195-202(2012).
[91] Ackermann R, Méchain G, Méjean G et al. Influence of negative leader propagation on the triggering and guiding of high voltage discharges by laser filaments[J]. Applied Physics B, 82, 561-566(2006).
[92] Kosareva O G, Grigor'evskii A V, Kandidov V P. Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse[J]. Quantum Electronics, 35, 1013-1014(2005).
[93] Liu W W, Théberge F, Daigle J F et al. An efficient control of ultrashort laser filament location in air for the purpose of remote sensing[J]. Applied Physics B, 85, 55-58(2006).
[94] Nuter R, Skupin S, Bergé L. Chirp-induced dynamics of femtosecond filaments in air[J]. Optics Letters, 30, 917-919(2005).
[95] Bergé L, Rasmussen J J, Kuznetsov E A et al. Self-focusing of chirped optical pulses in media with normal dispersion[J]. Journal of the Optical Society of America B, 13, 1879-1891(1996).
[96] Wang Z H, Hao Z Q, Zhang Z et al. Effects of temporal chirp on laser filamentation in air[J]. Acta Physica Sinica, 56, 1434-1438(2007).
[97] Chang J W, Li D W, Xi T T et al. Spectral hump formation in visible region of supercontinuum from shaped femtosecond laser filamentation in fused silica[J]. Photonics, 8, 339(2021).
[98] Jin Z, Zhang J, Xu M H et al. Control of filamentation induced by femtosecond laser pulses propagating in air[J]. Optics Express, 13, 10424-10430(2005).
[99] Champeaux S, Bergé L. Long-range multifilamentation of femtosecond laser pulses versus air pressure[J]. Optics Letters, 31, 1301-1303(2006).
[100] Couairon A, Franco M, Méchain G et al. Femtosecond filamentation in air at low pressures: part I: theory and numerical simulations[J]. Optics Communications, 259, 265-273(2006).
[101] Méchain G, Olivier T, Franco M et al. Femtosecond filamentation in air at low pressures. Part II: laboratory experiments[J]. Optics Communications, 261, 322-326(2006).
[102] Roskey D E, Kolesik M, Moloney J V et al. Self-action and regularized self-guiding of pulsed Bessel-like beams in air[J]. Optics Express, 15, 9893-9907(2007).
[103] Milián C, Jarnac A, Brelet Y et al. Effect of input pulse chirp on nonlinear energy deposition and plasma excitation in water[J]. Journal of the Optical Society of America B, 31, 2829-2837(2014).
[104] Feng Z F, Li W, Yu C X et al. Influence of the external focusing and the pulse parameters on the propagation of femtosecond annular Gaussian filaments in air[J]. Optics Express, 24, 6381-6390(2016).
[105] Feng Z F, Lan J P, Li W et al. Supercontinuum generated by a femtosecond annular Gaussian beam in air[J]. Physics of Plasmas, 27, 023515(2020).
[106] Li R, Feng Z F, Li W et al. The focusing effect of lens on the propagation of intense femtosecond annular Gaussian beam in atmosphere[J]. Journal of Quantum Optics, 26, 340-349(2020).
[107] Kiran P P, Bagchi S, Krishnan S R et al. Focal dynamics of multiple filaments: microscopic imaging and reconstruction[J]. Physical Review A, 82, 013805(2010).
[108] Fu Y X, Xiong H, Xu H et al. Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate[J]. Optics Letters, 34, 3752-3754(2009).
[109] Walter D, Bürsing H, Ebert R. Emission of spiral patterns from filaments in the infrared[J]. Optics Express, 18, 24258-24263(2010).
[110] Lü J Q, Li P P, Wang D et al. Extending optical filaments with phase-nested laser beams[J]. Photonics Research, 6, 1130-1136(2018).
[111] Polynkin P, Kolesik M, Moloney J. Extended filamentation with temporally chirped femtosecond Bessel-Gauss beams in air[J]. Optics Express, 17, 575-584(2009).
[112] Song H Y, An W Y, Li Y et al. Femtosecond laser filamentation modulation extension for the remote sensing application in orbit[J]. Spacecraft Recovery & Remote Sensing, 43, 70-77(2022).
[113] Molina-Terriza G, Torres J P, Torner L. Twisted photons[J]. Nature Physics, 3, 305-310(2007).
[114] York A G, Milchberg H M, Palastro J P et al. Direct acceleration of electrons in a corrugated plasma waveguide[J]. Physical Review Letters, 100, 195001(2008).
[115] Blow N. New ways to see a smaller world[J]. Nature, 456, 825-826(2008).
[116] Shvedov V G, Rode A V, Izdebskaya Y V et al. Giant optical manipulation[J]. Physical Review Letters, 105, 118103(2010).
[117] Sharma A, Misra S, Mishra S K et al. Dynamics of dark hollow Gaussian laser pulses in relativistic plasma[J]. Physical Review E, 87, 063111(2013).
[118] Panagiotopoulos P, Papazoglou D G, Couairon A et al. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets[J]. Nature Communications, 4, 1-6(2013).
[119] Feng Z F, Li W, Yu C X et al. Extended laser filamentation in air generated by femtosecond annular Gaussian beams[J]. Physical Review A, 91, 033839(2015).
[120] Wang H T, Fan C Y, Zhang P F et al. Extending mechanism of femtosecond filamentation by double coaxial beams[J]. Optics Communications, 305, 48-52(2013).
[121] Mills M S, Kolesik M, Christodoulides D N. Dressed optical filaments[J]. Optics Letters, 38, 25-27(2013).
[122] Scheller M, Mills M S, Miri M A et al. Externally refuelled optical filaments[J]. Nature Photonics, 8, 297-301(2014).
[123] Tzortzakis S, Méchain G, Patalano G et al. Concatenation of plasma filaments created in air by femtosecond infrared laser pulses[J]. Applied Physics B, 76, 609-612(2003).
[124] Chen A M, Li S Y, Li S C et al. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse[J]. Physics of Plasmas, 20, 103110(2013).
[125] Couairon A, Méchain G, Tzortzakis S et al. Propagation of twin laser pulses in air and concatenation of plasma strings produced by femtosecond infrared filaments[J]. Optics Communications, 225, 177-192(2003).
[126] Bergé L. Boosted propagation of femtosecond filaments in air by double-pulse combination[J]. Physical Review E, 69, 065601(2004).
[127] Wang T J, Daigle J F, Yuan S et al. Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air[J]. Physical Review A, 83, 053801(2011).
[128] Béjot P, Kasparian J, Wolf J P. Dual-color co-filamentation in argon[J]. Optics Express, 16, 14115-14127(2008).
[129] Feng Z F, Lan J P, Li W et al. A long-distance two-color filament produced by three collinear femtosecond pulses in air[J]. Optics Communications, 474, 126167(2020).
[130] Bourayou R, Méjean G, Kasparian J et al. White-light filaments for multiparameter analysis of cloud microphysics[J]. Journal of the Optical Society of America B, 22, 369-377(2005).
[131] Béjot P, Bonacina L, Extermann J et al. 32 TW atmospheric white-light laser[J]. Applied Physics Letters, 90, 151106(2007).
[132] Zhang L W, Lin C, Xin L et al. New remote sensing system: white-light Lidar[J]. High Power Laser and Particle Beams, 20, 1603-1607(2008).
[133] Yue S Y, Lin C, Gao J Y. Development and application of white-light lidar[J]. Journal of Atmospheric and Environmental Optics, 5, 1-13(2010).
[134] Petit Y, Henin S, Nakaema W M et al. 1-J white-light continuum from 100-TW laser pulses[J]. Physical Review A, 83, 013805(2011).
[135] Petrarca M, Henin S, Berti N et al. White-light femtosecond Lidar at 100 TW power level[J]. Applied Physics B, 114, 319-325(2014).
[136] Hosseini S, Kosareva O, Panov N et al. Femtosecond laser filament in different air pressures simulating vertical propagation up to 10 km[J]. Laser Physics Letters, 9, 868-874(2012).
[137] Feng Z F, Li R, Li W et al. The propagation of femtosecond laser filaments in air with continuously varying pressures[J]. Optics Communications, 502, 127404(2022).
[138] Liu X, Li W, Feng Z F et al. Simulation of femtosecond laser propagation in orbit for remote sensing applications[J]. Spacecraft Recovery & Remote Sensing, 43, 78-88(2022).
[139] Sun H Y, Liang H, Liu Y H et al. Differently patterned airflows induced by 1-kHz femtosecond laser filaments in a cloud chamber[J]. Applied Physics B, 121, 155-169(2015).
[140] Ju J J, Leisner T, Sun H Y et al. Laser-induced supersaturation and snow formation in a sub-saturated cloud chamber[J]. Applied Physics B, 117, 1001-1007(2014).
Get Citation
Copy Citation Text
Zhifang Feng, Xun Liu, Ting Hao, Lina Liu, Wei Li, Dewei Sun. Review on Ultra-Long Distance Propagation of Femtosecond Laser Pulses for Remote Sensing Applications[J]. Chinese Journal of Lasers, 2023, 50(7): 0708003
Category: nonlinear optics
Received: Dec. 19, 2022
Accepted: Feb. 23, 2023
Published Online: Apr. 14, 2023
The Author Email: Liu Xun (liuxun_laby@163.com)