Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 11, 1486(2021)

Image deblurring method based on dual task convolution neural network

CHEN Qing-jiang*, HU Qian-nan, and LI Jin-yang
Author Affiliations
  • [in Chinese]
  • show less
    References(20)

    [1] [1] KOUR A, YADA V K, MAHESHWARI V, et al. A review on image processing [J]. International Journal of Electronics Communication and Computer Engineering, 2013, 4(1): 270-275.

    [2] [2] MAIRAL J, BACH F, PONCE J, et al. Non-local sparse models for image restoration [C]//2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009: 2272-2279.

    [3] [3] DONG W S, WANG P Y, YIN W T, et al. Denoising prior driven deep neural network for image restoration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(10): 2305-2318.

    [4] [4] NAH S, KIM T H, LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring [C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 257-265.

    [5] [5] PAN J S, HU Z, SU Z X, et al. Deblurring text images via L0-regularized intensity and gradient prior [C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014: 2901-2908.

    [6] [6] LEVIN A, FERGUS R, DURAND F, et al. Image and depth from a conventional camera with a coded aperture [J]. ACM Transactions on Graphics, 2007, 26(3): 70-es.

    [7] [7] REN W Q, CAO X C, PAN J S, et al. Image deblurring via enhanced low-rank prior [J]. IEEE Transactions on Image Processing, 2016, 25(7): 3426-3437.

    [10] [10] XU L, REN J S J, LIU C, et al. Deep convolutional neural network for image deconvolution [C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2014: 1790-1798.

    [11] [11] HRADI M, KOTERA J, ZEMCˇK P, et al. Convolutional neural networks for direct text deblurring [C]//Proceedings of the British Machine Vision Conference. Swansea, UK: BMVA Press, 2015: 6.1-6.13.

    [12] [12] SU S C, DELBRACIO M, WANG J, et al. Deep video deblurring for hand-held cameras [C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 237-246.

    [13] [13] ZHANG H G, DAI Y C, LI H D, et al. Deep stacked hierarchical multi-patch network for image deblurring [C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 5978-5986.

    [14] [14] YIN S B, WANG Y B, YANG Y H. A novel image-dehazing network with a parallel attention block [J]. Pattern Recognition, 2020, 102: 107255.

    [15] [15] CHEN Y P, FAN H Q, XU B, et al. Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution [C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE, 2019: 3434-3443.

    [16] [16] TAO X, GAO H Y, SHEN X Y, et al. Scale-recurrent network for deep image deblurring [C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 8174-8182.

    [18] [18] LIU X, SUGANUMA M, SUN Z, et al. Dual residual networks leveraging the potential of paired operations for image restoration [C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 7000-7009.

    [19] [19] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module [C]//Proceedings of the European Conference on Computer Vision. Munich, Germany: Springer, 2018: 3-19.

    [20] [20] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778.

    [21] [21] SUN J, CAO W F, XU Z B, et al. Learning a convolutional neural network for non-uniform motion blur removal [C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015: 769-777.

    [22] [22] YE M Y, LYU D, CHEN G S. Scale-iterative upscaling network for image deblurring [J]. IEEE Access, 2020, 8: 18316-18325.

    [23] [23] ZHOU S C, ZHANG J W, ZUO W M, et al. DAVANet: Stereo deblurring with view aggregation [C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 10988-10997.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Qing-jiang, HU Qian-nan, LI Jin-yang. Image deblurring method based on dual task convolution neural network[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(11): 1486

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 2, 2021

    Accepted: --

    Published Online: Dec. 1, 2021

    The Author Email: CHEN Qing-jiang (qjchen66xytu@126.com)

    DOI:10.37188/cjlcd.2021-0001

    Topics