Acta Photonica Sinica, Volume. 52, Issue 3, 0352102(2023)
Research and Application Progress of Cavity-enhanced Absorption Spectroscopy(Invited)
[1] WANG Min, HUANG Ying. Environmental pollution and economic growth in China[J]. China Economic Quarterly, 14, 557-558(2015).
[2] CHAI Fahe, CHEN Yizhen, WEN Yi et al. Study on the technology and demonstration of regional air pollutant control[J]. Research of Environmental Science, 19, 163-171(2006).
[3] RONG Zhiguo, ZHANG Yuxiang, ZHONG Shiquan et al. Sensitivity test of satellite fire detection and selection of new fire detection channel by remote sensing[J]. Advances in Earth Science, 22, 866-871(2007).
[4] DONG Meili, ZHAO Weixiong, CHENG Yue et al. Application of broadband cavity enhanced absorption spectroscopy to trace gas detection and aerosol extinction coefficient measurement[J]. Acta Physica Sinica, 61, 113-118(2012).
[5] JIANG Chenyu, SUN Meixiu, LI Yingxin et al. Development and future of laser spectroscopy in respiratory gas analysis[J]. Chinese Journal of Lasers, 45, 191-199(2018).
[6] CHEN Xiao, SUI Qingmei, MIAO Fei et al. High sensitivity cavity enhanced absorption acetylene gas detection system[J]. Optics and Precision Engineering, 20, 9-16(2012).
[7] PENG Qiulian, LI Manhua. Research progress of laser spectral gas analysis technology in medical diagnosis[J]. Applied Laser, 28, 341-344(2008).
[8] HAN Luo, XIA Hua, DONG Fengzhong et al. Research progress and application of cavity enhanced absorption spectroscopy[J]. Chinese Journal of Lasers, 45, 37-48(2018).
[9] O'KEEFE A. Integrated cavity output analysis of ultra-weak absorption[J]. Chemical Physics Letters, 293, 331-336(1998).
[10] CHEN H, WINDERLICH J, GERBIG C et al. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique[J]. Atmospheric Measurement Techniques, 3, 375-386(2010).
[11] MI Yunping, WANG Xiaoping, ZHAN Shuyue. Optical cavity ring-down spectroscopy and its application[J]. Optical Instruments, 29, 85-89(2007).
[12] LANGRIDGE J M, LAURILA T, WATT R S et al. Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source[J]. Optics Express, 16, 10178-10188(2008).
[13] O'KEEFE A, SCHERER J J, PAUL J B. Cw integrated cavity output spectroscopy[J]. Chemical Physics Letters, 307, 343-349(1999).
[14] PAUL J B, SCHERER J J, O'KEEFE A et al. Infrared cavity ringdown and integrated cavity output spectroscopy for trace species monitoring[C], 4577, 1-11(2002).
[15] BAER D S, PAUL J B, GUPTA M et al. Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy[J]. Applied Physics B, 75, 261-265(2002).
[16] PAUL J B, LAPSON L, ANDERSON J G. Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment[J]. Applied Optics, 40, 4904-4910(2001).
[17] ZHU X, WANG G, QU D. Integrated cavity output spectroscopy and its application in terms of trace gas detection[C], 10461, 188-198(2017).
[18] LIU Yingming, WANG Jian, YU Dahai et al. Integrated cavity output spectroscopy and its application[J]. Optical Instruments, 31, 87-91(2009).
[19] ZHAO Weixiong. Integrated cavity output spectroscopy and its application[D](2008).
[20] MADDALONI P, GAGLIARDI G, MALARA P et al. Off-axis integrated-cavity-output spectroscopy for trace-gas concentration measurements: modeling and performance[J]. Journal of the Optical Society of America B, 23, 1938-1945(2006).
[21] HERRIOTT D, KOGELNIK H, KOMPFNER R. Off-axis paths in spherical mirror interferometers[J]. Applied Optics, 3, 523-526(1964).
[22] HERRIOTT D, SCHULTE H. Folded optical delay lines[J]. Applied Optics, 4, 883-889(1965).
[23] ENGELN R, BERDEN G, PEETERS R et al. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy[J]. Review of Scientific Instruments, 69, 3763-3769(1998).
[24] CHAO Xing, JEFFRIES J. Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3 μm laser absorption sensor[J]. Applied Physics B, 110, 359-365(2013).
[25] CENTENO R, MANDON J, CRISTESCU S et al. Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser[J]. Sensors & Actuators B Chemical, 203, 311-319(2014).
[26] LANG N, MACHERIUS U, ZIMMERMANN H et al. RES-Q-trace: a mobile CEAS-based demonstrator for multi-component trace gas detection in the MIR[J]. Sensors, 18, 2058(2018).
[27] FIEDLER S, HESE A, RUTH A. Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids[J]. Review of Scientific Instruments, 76, 023107(2005).
[28] ZHENG K, ZHENG C, ZHANG Y et al. Review of Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy (IBBCEAS) for gas sensing[J]. Sensors, 18, 3646(2018).
[29] BALL S, JONES R. Broad-band cavity ring-down spectroscopy[J]. Chemical Reviews, 103, 5239-5262(2003).
[30] ALBERT A, RUTH. Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source[J]. Applied Optics, 46, 3611-3616(2007).
[31] CHEN J, VENABLES D. A broadband optical cavity spectrometer for measuring weak near-ultraviolet absorption spectra of gases[J]. Atmospheric Measurement Techniques, 4, 425-436(2011).
[32] THOMPSON J, SPANGLER H. Tungsten source integrated cavity output spectroscopy for the determination of ambient atmospheric extinction coefficient[J]. Applied Optics, 45, 2465-2473(2006).
[33] BALL S, LANGRIDGE J, JONES R. Broadband cavity enhanced absorption spectroscopy using light emitting diodes[J]. Chemical Physics Letters, 398, 68-74(2004).
[34] LANGRIDGE J, BALL S, JONES R. A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes[J]. Analyst, 131, 916-922(2006).
[35] LANGRIDGE J, BALL S, SHILLINGS A et al. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection[J]. Review of Scientific Instruments, 79, 123110(2008).
[36] GHERMAN T, VENABLES D, VAUGHAN S et al. Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2[J]. Environmental Science & Technology, 42, 890-895(2008).
[37] WU T, ZHAO W, CHEN W et al. Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode[J]. Applied Physics B, 94, 85-94(2009).
[38] LING Liuyi, WEI Yin, HUANG Yourui et al. Study on the calibration method of atmospheric NO2 measured by broadband cavity enhanced absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 38, 670-675(2018).
[39] LING Liuyi, XIE Pinhua, QIN Min et al. Measurement of atmospheric NO2 by open optical path incoherent broadband cavity enhanced absorption spectroscopy[J]. Acta Optica Sinica, 33, 0130002(2012).
[40] DUAN Jun, QIN Min, FANG Wu et al. Application of incoherent broadband cavity enhanced absorption spectroscopy to the measurement of nitrous acid in atmosphere[J]. Chinese Journal of Physics, 64, 226-233(2015).
[41] WU T, ZHA Q, CHEN W et al. Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong[J]. Atmospheric Environment, 95, 544-551(2014).
[42] WASHENFELDER R, LANGFORD A, FUCHS H et al. Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer[J]. Atmospheric Chemistry and Physics, 8, 7779-7793(2008).
[43] LING Liuyi, QIN Min, XIE Pinhua et al. Detection of HONO and NO2 by incoherent broadband cavity enhanced absorption spectroscopy based on LED light source[J]. Acta Physica Sinica, 61, 98-104(2012).
[44] YANG Xiaodong, LI Zhengdeng, LI Huiling et al. Influence of incident and outgoing slit width of grating spectrometer on the width of measured spectral line[J]. Journal of Jiayin University, 26, 38-41(2008).
[45] THORPE M, YE J. Cavity-enhanced direct frequency comb spectroscopy[J]. Applied Physics B, 91, 397-414(2008).
[46] KAUFMANN M, OLSCHEWSKI F, MANTEL K et al. On the assembly and calibration of a spatial heterodyne interferometer for limb sounding of the middle atmosphere[J]. CEAS Space Journal, 11, 525-531(2019).
[47] LAURILA T, WATT R, KAMINSKI C. Broadband cavity enhanced trace sensing using supercontinuum light sources[C], LMB2(2010).
[48] XIE Zhengmao. Research on Key technologies of near-infrared Polarization interferometer[D](2015).
[49] CHEN J, WANG D, RAMACHANDRAN A et al. An open-path dual-beam laser spectrometer for path-integrated urban NO2 sensing[J]. Sensors and Actuators A: Physical, 315, 112208(2020).
[50] CIAFFONI L, HANCOCK G, HARRISON J et al. Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection[J]. Analytical Chemistry, 85, 846-850(2013).
[51] CUNDIFF S, YE J. Colloquium: femtosecond optical frequency combs[J]. Reviews of Modern Physics, 75, 325(2003).
[52] ADLER F, THORPE M, COSSEL K et al. Cavity-enhanced direct frequency comb spectroscopy: technology and applications[J]. Annual Review of Analytical Chemistry, 3, 175(2010).
[53] GRIFFITHS P, DE HASETH J[M]. Fourier transform infrared spectrometry(2007).
[54] FOLTYNOWICZ A, BAN T, MASŁOWSKI P et al. Quantum-noise-limited optical frequency comb spectroscopy[J]. Physical Review Letters, 107, 233002(2011).
[55] SCHILLER S. Spectrometry with frequency combs[J]. Optics Letters, 27, 766-768(2002).
[56] FLEISHER A, LONG D, REED Z et al. Coherent cavity-enhanced dual-comb spectroscopy[J]. Optics Express, 24, 10424-10434(2016).
[57] HOGHOOGHI N, WRIGHT R, MAKOWIECKI A et al. Broadband coherent cavity-enhanced dual-comb spectroscopy[J]. Optica, 6, 28-33(2019).
[58] BERNHARDT B, OZAWA A, JACQUET P et al. Cavity-enhanced dual-comb spectroscopy[J]. Nature photonics, 4, 55-57(2010).
[59] SHIRASAKI M. Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer[J]. Optics Letters, 21, 366-368(1996).
[60] IWAKUNI K, BUI T, NIEDERMEYER J et al. Comb-resolved spectroscopy with immersion grating in long-wave infrared[J]. Optics Express, 27, 1911-1921(2019).
[61] SCHOLTEN S, ANSTIE J, HÉBERT N et al. Complex direct comb spectroscopy with a virtually imaged phased array[J]. Optics Letters, 41, 1277-1280(2016).
[62] JOHANSSON A, LUCILE R, ANNA F et al. Broadband calibration-free cavity-enhanced complex refractive index spectroscopy using a frequency comb[J]. Optics Express, 26, 20633-20648(2018).
[63] FIEDLER S, HESE A, RUTH A. Incoherent broad-band cavity-enhanced absorption spectroscopy[J]. Chemical Physics Letters, 371, 284-294(2003).
[66] SU Yaxin, MAO Yuru, XU Zhang[M]. Nitrogen oxide emission control technology from coal burning(2005).
[67] HAO Jiming, MA Guangda, YU Ke et al[M]. Air pollution control project(1989).
[68] WANG Liping, CHEN Jianping[M]. Air pollution control engineering(2002).
[69] LIANG Shuaixi, QIN Min, DUAN Jun et al. Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2[J]. Acta Physica Sinica, 66, 090704(2017).
[70] WASHENFELDER R, ATTWOOD A, FLORES J et al. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde[J]. Atmospheric Measurement Techniques, 9, 41-52(2016).
[71] KENNEDY O, OUYANG B, LANGRIDGE J et al. An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2[J]. Atmospheric Measurement Techniques, 4, 1759-1776(2011).
[72] BALL S, LANGRIDGE J, JONES R. Broadband cavity enhanced absorption spectroscopy using light emitting diodes[J]. Chemical Physics Letters, 398, 68-74(2004).
[73] VENABLES D, GHERMAN T, ORPHAL J et al. High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy[J]. Environmental Science & Technology, 40, 6758-6763(2006).
[74] HONG Y, LIM J, CHOI J et al. Measurement of nitrogen dioxide and nitric oxide densities by using CEAS (cavity‐enhanced absorption spectroscopy) in nonthermal atmospheric pressure air plasma[J]. Plasma Processes and Polymers, 18, 1-8(2021).
[75] WANG H, CHEN J, LU K. Development of a portable cavity-enhanced absorption spectrometer for the measurement of ambient NO3 and N2O5: experimental setup, lab characterizations, and field applications in a polluted urban environment[J]. Atmospheric Measurement Techniques, 10, 1465-1479(2017).
[76] NAKASHIMA Y, SADANAGA Y. Validation of in situ measurements of atmospheric nitrous acid using incoherent broadband cavity-enhanced absorption spectroscopy[J]. Analytical Sciences, 33, 519-524(2017).
[77] AMIOT C, AALTO A, RYCZKOWSKI P et al. Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source[J]. Applied Physics Letters, 111, 061103(2017).
[78] DANG J, KONG L, ZHENG C et al. An open-path sensor for simultaneous atmospheric pressure detection of CO and CH4 around 2.33 μm[J]. Optics and Lasers in Engineering, 123, 1-7(2019).
[79] VENABLES D, GHERMAN T, ORPHAL J et al. High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy[J]. Environmental Science & Technology, 40, 6758-6763(2006).
[80] VARMA R, VENABLES D, RUTH A et al. Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction[J]. Applied Optics, 48, 159-171(2009).
[81] YI H, WU T, WANG G et al. Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy[J]. Optics Express, 24, 781-790(2016).
[82] JORDAN N, YE C, GHOSH S et al. A broadband cavity-enhanced spectrometer for atmospheric trace gas measurements and Rayleigh scattering cross sections in the cyan region (470-540 nm)[J]. Atmospheric Measurement Techniques, 12, 1277-1293(2019).
[83] AMIOT C, ALTO A, RYCZKOWSKI P et al. Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source[J]. Applied Physics Letters, 111, 1-4(2017).
[84] AXSON J, WASHENFELDER R, KAHAN T et al. Absolute ozone absorption cross section in the Huggins Chappuis minimum (350-470 nm) at 296 K[J]. Atmospheric Chemistry and Physics, 11, 11581-11590(2011).
[85] ORPHAL J, RUTH A. High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source[J]. Optics Express, 16, 19232-19243(2008).
[86] WATT R S, LAURILA T, KAMINSKI C et al. Cavity enhanced spectroscopy of high-temperature H2O in the near-infrared using a supercontinuum light source[J]. Applied Spectroscopy, 63, 1389-1395(2009).
[87] DENG C, ZHANG W, ZHANG J et al. Rapid determination of acetone in human plasma by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization[J]. Journal of Chromatography B, 805, 235-240(2004).
[88] WANG C, SCHERRER S, HOSSAIN D. Measurements of cavity ringdown spectroscopy of acetone in the ultraviolet and near-infrared spectral regions: potential for development of a breath analyzer[J]. Applied Spectroscopy, 58, 784-791(2004).
[89] YING Kejing, HUANG Qiang. Application of respiratory gas detection in early diagnosis of lung cancer[J]. International Respiratory Journal, 26, 143-145(2006).
[90] MCCURDY M, BAKHIRKIN Y, WYSOCKI G et al. Recent advances of laser-spectroscopy-based techniques for applications in breath analysis[J]. Journal of Breath Research, 1, 014001(2007).
[91] TONG Minming, WANG Ying, LI Jiao et al. Study on new acetone analyzer[J]. Instrument Technique and Sensor, 16-17(2007).
[92] WANG C, SAHAY P. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits[J]. Sensors, 9, 8230-8262(2009).
[93] WANG C, MBI A, SHEPHERD M. A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C[J]. IEEE Sensors Journal, 10, 54-63(2010).
[94] LIN L, DONG H, WANG F et al. Progress in technology and equipment of exhaled breath detection[J]. China Medical Devices, 31, 23-29(2016).
[95] AMANN A, MIEKISCH W, SCHUBERT J et al. Analysis of exhaled breath for disease detection[J]. Annual Review of Analytical Chemistry, 7, 455-482(2014).
[96] JIANG C, SUN M, WANG Z et al. A portable real-time ringdown breath acetone analyzer: toward potential diabetic screening and management[J]. Sensors, 16, 1199-1213(2016).
[97] SUN M, CHEN Z, GONG Z et al. Determination of breath acetone in 149 Type 2 diabetic patients using a ringdown breath-acetone analyzer[J]. Analytical & Bioanalytical Chemistry, 407, 1641-1650(2015).
[98] KAMAT P, ROLLER C, NAMJOU K et al. Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer[J]. Applied Optics, 46, 3969-3975(2007).
[99] WANG C, SURAMPUDI A. An acetone breath analyzer using cavity ringdown spectroscopy: an initial test with human subjects under various situations[J]. Measurement Science and Technology, 19, 105604(2008).
[100] MANNE J, JÄGER W, TULIP J. Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques[J]. Applied Physics B, 94, 337-344(2009).
[101] MOSKALENKO K, NADEZHDINSKII A, ADAMOVSKAYA I. Human breath trace gas content study by tunable diode laser spectroscopy technique[J]. Infrared Physics & Technology, 37, 181-192(1996).
[102] LUO Z, TAN Z, LONG X. Application of near-infrared optical feedback cavity enhanced absorption spectroscopy (OF-CEAS) to the detection of ammonia in exhaled human breath[J]. Sensors, 19, 3686-3696(2019).
[103] THORPE M, BALSLEV-CLAUSEN D, KIRCHNER M et al. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis[J]. Optics Express, 16, 2387-2397(2008).
[104] CROSSON E, RICCI K, RICHMAN B et al. Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath[J]. Analytical Chemistry, 74, 2003-2007(2002).
[105] PARAMESWARAN K, ROSEN D, ALLEN M et al. Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements[J]. Applied Optics, 48, B73-B79(2009).
[106] BAER D, PAUL J, GUPTA M et al. Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy[J]. Applied Physics B, 75, 261-265(2002).
[107] WANG J, ZHANG W, LI L et al. Breath ammonia detection based on tunable fiber laser photoacoustic spectroscopy[J]. Applied Physics B, 103, 263-269(2011).
[108] BAYRAKLI I, AKMAN H, SARI F. High-sensitivity biomedical sensor based on photoacoustic and cavity enhanced absorption spectroscopy with a new software platform for breath analysis[J]. Applied Optics, 60, 2093-2099(2021).
[109] PANDA B, PAL A, CHAKRABORTY S et al. An EC-QCL based dual-species (CH4/N2O) detection method at 7.8 µm in mid-IR region for simultaneous applications of atmospheric monitoring and breath diagnostics[J]. Infrared Physics & Technology, 125, 104261(2022).
[110] LIANG Q, CHAN Y, CHANGALA P et al. Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics[J]. Proceedings of the National Academy of Sciences, 118, e2105063118(2021).
[111] LIANG Q, CHAN Y, TOSCANO J et al. Frequency comb and machine learning-based breath analysis for COVID-19 classification[J]. arXiv preprint(2022).
[112] HANSON R. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems[J]. Proceedings of the Combustion Institute, 33, 1-40(2011).
[113] DAVIDSON D, HANSON R. Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements[J]. Shock Waves, 19, 271-283(2009).
[114] WANG S, LI S, DAVIDSON D et al. Shock tube measurement of the high-temperature rate constant for OH+CH3→products[J]. The Journal of Physical Chemistry A, 119, 8799-8805(2015).
[115] WHITE J. Long optical paths of large aperture[J]. JOSA, 32, 285-288(1942).
[116] HERRIOTT D, KOGELNIK H, KOMPFNER R. Off-axis paths in spherical mirror interferometers[J]. Applied Optics, 3, 523-526(1964).
[117] MOYER E, SAYRES D, ENGEL G et al. Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy[J]. Applied Physics B, 92, 467-474(2008).
[118] FJODOROW P, FIKRI M, SCHULZ C et al. Time-resolved detection of temperature, concentration, and pressure in a shock tube by intracavity absorption spectroscopy[J]. Applied Physics B, 122, 1-9(2016).
[119] SUN K, WANG S, SUR R et al. Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6 µm[J]. Optics Express, 22, 24559-24565(2014).
[120] WANG S, SUN K, DAVIDSON D et al. Shock-tube measurement of acetone dissociation using cavity-enhanced absorption spectroscopy of CO[J]. The Journal of Physical Chemistry A, 119, 7257-7262(2015).
[121] WANG S, DAVIDSON D, HANSON R. Shock Tube measurement for the dissociation rate constant of acetaldehyde using sensitive CO diagnostics[J]. The Journal of Physical Chemistry A, 120, 6895-6901(2016).
[122] NATIONS M, WANG S, GOLDENSTEIN C et al. Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy[J]. Applied Optics, 54, 8766-8775(2015).
[123] WANG S, DAVIDSON D, HANSON R. Improved shock tube measurement of the CH4+Ar=CH3+H+Ar rate constant using UV cavity-enhanced absorption spectroscopy of CH3[J]. The Journal of Physical Chemistry A, 120, 5427-5434(2016).
[124] WANG S, DAVIDSON D, JEFFRIES J et al. Time-resolved sub-ppm CH3 detection in a shock tube using cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser[J]. Proceedings of the Combustion Institute, 36, 4549-4556(2017).
[125] MHANNA M, SY M, ELKHAZRAJI A et al. Laser-based sensor for multi-species detection using ceas and dnn[C], 1-2(2022).
[126] MATSUGI A. Thermal decomposition of benzyl radicals: kinetics and spectroscopy in a shock tube[J]. The Journal of Physical Chemistry A, 124, 824-835(2020).
[127] PELTOLA J, SEAL P, VUORIO N et al. Solving the discrepancy between the direct and relative-rate determinations of unimolecular reaction kinetics of dimethyl-substituted Criegee intermediate (CH3)2COO using a new photolytic precursor[J]. Physical Chemistry Chemical Physics, 24, 5211-5219(2022).
Get Citation
Copy Citation Text
Xing CHAO, Zhen HU, Ning ZHU. Research and Application Progress of Cavity-enhanced Absorption Spectroscopy(Invited)[J]. Acta Photonica Sinica, 2023, 52(3): 0352102
Category: Special Issue for Frontiers and Techniques of Laser Spectroscopy
Received: Oct. 31, 2022
Accepted: Dec. 15, 2022
Published Online: Jun. 21, 2023
The Author Email: Xing CHAO (chaox6@tsinghua.edu.cn)