Acta Optica Sinica, Volume. 40, Issue 12, 1210001(2020)
AnImproved Method for Retinal Vascular Segmentation in U-Net
Fig. 4. Database partial images. (a) Original image; (b) human manual segmentation figure 1; (c) human manual segmentation figure 2; (d) mask
Fig. 5. Color image sub-channel maps. (a) RGB original image; (b) red channel; (c) green channel; (d) blue channel
Fig. 6. Local sample block. (a) Training local sample block; (b) ground truth local sample block
Fig. 7. DRIVE database segmentation results. (a) Original images; (b) ground truth images; (c) segmentation result images
Fig. 8. STARE database segmentation results. (a) Original images; (b) ground truth images; (c) segmentation result images
Fig. 9. Segmentation results. (a) Img255 image; (b) ground truth images; (c) U-Net segmentation result; (d) AttR2U-Net segmentation result; (e) img255 local image; (f) local ground truth images; (g) U-Net local segmentation results; (h) AttR2U-Net local segmentation result
|
|
|
|
|
Get Citation
Copy Citation Text
Wenxuan Xue, Jianxia Liu, Ran Liu, Xiaohui Yuan. AnImproved Method for Retinal Vascular Segmentation in U-Net[J]. Acta Optica Sinica, 2020, 40(12): 1210001
Category: Image Processing
Received: Feb. 10, 2020
Accepted: Mar. 23, 2020
Published Online: Jun. 3, 2020
The Author Email: Jianxia Liu (tyljx@163.com)