Laser & Optoelectronics Progress, Volume. 58, Issue 16, 1610018(2021)

Palmprint Recognition Based on Multi-Scale Gabor Orientation Weber Local Descriptors

Mengwen Li, Huaiyu Liu*, Xiangjun Gao, and Qianqian Meng
Author Affiliations
  • College of Computer Science and Technology, Huaibei Normal University, Huaibei, Anhui 235000, China
  • show less
    Figures & Tables(21)
    Computation of differential excitation and gradient orientation. (a) Differential excitation; (b) gradient orientation
    Illustration of construction of 2D WLD features
    Orientation values of different pixels
    Gabor filter with 5 scales and 6 orientations
    Energy maps and orientation maps of a plamprint image. (a) Energy maps; (b) orientation maps
    Differential excitation values of different pixels
    Differential excitation of energy maps at different scales. (a) v=0;(b) v=1;(c) v=2;(d) v=3;(e) v=4
    Process of MGOWLD feature extraction
    Examples of palmprint images collected from different palmprint databases. (a) PolyU;(b) Blue;(c) Green;(d) Red;(e) NIR;(f) CASIA
    ROIs of palmprint images
    IR of different palmprint recognition methods. (a) PolyU;(b) Blue;(c) Green;(d) Red;(e) NIR;(f) CASIA
    Distributions of matching scores on different palmprint databases. (a) Blue;(b) Green; (c) Red;(d) NIR;(e) PolyU;(f) CASIA
    ROC curves of different methods. (a) Blue;(b) Green;(c) Red;(d) NIR;(e) PolyU;(f) CASIA
    Palmprint images with different levels of Gaussian noise. (a) Variance is 10;(b) variance is 20; (c) variance is 30;(d) variance is 60;(e) variance is 80;(f) variance is 100
    Energy maps of noisy palmprint image. (a) NIR palmprint images;(b) CASIA palmprint images
    • Table 1. Steps of MGOWLD feature extraction

      View table

      Table 1. Steps of MGOWLD feature extraction

      Input:palmprint image IOutput:feature vector F
      1. Utilize Eq.(13)--Eq.(16) to generate Gabor filters Gu,v with V scales and U orientations2. Image I is filtered by Gu,v,and utilize Eq.(18)--Eq.(19) to generate energy maps Ev and orientation maps Ov3. Following operations are performed on energy maps and orientation maps of each scale: 3.1 Ev and Ov are divided into N non-overlapping regions,and each region is recorded as Ev(n) and Ov(n) ,respectively 3.2 Utilize Eq.(21)--Eq.(24) to calculate differential excitation ξm(n) for each Ev(n) 3.3 Obtain statistics of feature histogram HMGOWLD(n)(ξm(n),Ov(n)) for each differential excitation ξm(n) and orientation Ov(n) 3.4 Each column of HMGOWLD(n)(ξm(n),Ov(n)) is connected to form one-dimensional feature vector fn 3.5 Concatenate the feature vector fn of each block to form vector Fv=f1,f2,,fN as the feature of scale v4. Feature vectors Fv of all scales are connected to form the feature vector F=F1,F2,,FV
    • Table 2. EER of different palmprint recognition methods unit: %

      View table

      Table 2. EER of different palmprint recognition methods unit: %

      MGOWLDLBPALDC_AALDC_MHOGLDDBPDOCHOCLWLDAWASTP
      Blue0.02723.11110.56610.55560.80360.24442.60541.87620.17784.0057
      Green0.06678.41880.60000.57781.13330.37782.63602.06670.18035.3333
      Red0.04443.69440.58900.58850.88950.26672.02951.60710.46675.1549
      NIR0.04614.61351.04151.04441.72600.38472.14871.82050.66295.1773
      PolyU0.159416.71971.63411.69393.53361.07614.82194.14050.850412.1125
      CASIA1.48878.70618.99688.53194.81992.68388.111910.64515.79855.6311
    • Table 3. IR of MGOWLD under different degrees of noise pollution unit: %

      View table

      Table 3. IR of MGOWLD under different degrees of noise pollution unit: %

      Variance01020306080100
      Blue10010099.9710099.8799.8099.47
      Green99.9799.9399.9099.9099.7799.4399.20
      Red10099.7799.6799.0397.9096.3093.37
      NIR10099.7399.2098.3090.1082.3073.83
      PolyU99.8899.8699.8699.8899.8899.8699.84
      CASIA98.3296.5095.4093.9289.8486.7383.95
    • Table 4. EER of MGOWLD under different degrees of noise pollution unit: %

      View table

      Table 4. EER of MGOWLD under different degrees of noise pollution unit: %

      Variance01020306080100
      Blue0.02720.04570.06540.08490.20000.22220.3193
      Green0.06670.08890.14360.17040.23100.28890.4498
      Red0.04440.21720.26670.40800.85811.15681.5556
      NIR0.04610.24950.37780.71112.04983.11734.3846
      PolyU0.15940.19930.20500.21920.23910.33100.3384
      CASIA1.48872.51333.04543.23624.52275.56176.0003
    • Table 5. IR and EER of three palmprint recognition methods on different databases unit: %

      View table

      Table 5. IR and EER of three palmprint recognition methods on different databases unit: %

      DatabasePCANetPalmNetMGOWLD
      IREERIREERIREER
      Blue1000.001486.3013.39321000.0004
      Green1000.003293.706.30001000.0078
      Red1000.091086.4011.37951000.1000
      NIR1000.021587.2011.68801000.0083
      PolyU99.800.200090.209.906699.800.1940
      CASIA95.702.834073.0023.189498.701.4145
    • Table 6. Time cost of different palmprint recognition methods unit: s

      View table

      Table 6. Time cost of different palmprint recognition methods unit: s

      MethodFeature extractFeature matchingTotal time
      MGOWLD0.5600.0520.612
      PCANet0.4306.5807.010
      PalmNet0.7506.1506.900
    Tools

    Get Citation

    Copy Citation Text

    Mengwen Li, Huaiyu Liu, Xiangjun Gao, Qianqian Meng. Palmprint Recognition Based on Multi-Scale Gabor Orientation Weber Local Descriptors[J]. Laser & Optoelectronics Progress, 2021, 58(16): 1610018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jan. 14, 2021

    Accepted: Feb. 12, 2021

    Published Online: Jul. 16, 2021

    The Author Email: Huaiyu Liu (hbnucs@126.com)

    DOI:10.3788/LOP202158.1610018

    Topics