Acta Laser Biology Sinica, Volume. 33, Issue 6, 512(2024)
HIF-1α/PFKFB3 Signaling Pathway Mediates GK Regulation of Islets in Type 2 Diabetes β Progress in Cellular Function Research
[1] [1] FEDERATION I D. IDF diabetes atlas, 10th edition 2021[EB/OL]. (2021-12-06) [2024-11-18]. https://diabetesatlas.org/.html.
[2] [2] ELIASSON B, SMITH U, MULLEN S, et al. Amelioration of insulin resistance by rosiglitazone is associated with increased adipose cell size in obese type 2 diabetic patients[J]. Adipocyte, 2014, 3(4): 314-321.
[3] [3] NIE Y, LI J, JIN Y, et al. Negative effects of cyclic palmitate treatment on glucose responsiveness and insulin production in mouse insulinoma min6 cells are reversible[J]. DNA and Cell Biology, 2019, 38(4): 395-403.
[4] [4] KHIN P P, LEE J H, JUN H S. A brief review of the mechanisms of -cell dedifferentiation in type 2 diabetes[J]. Nutrients, 2021, 13(5): 1593.
[5] [5] AN W, HUANG Y, CHEN S, et al. Efficacy and safety of Huangkui capsule for diabetic nephropathy: a protocol for systematic review and meta-analysis[J]. Medicine, 2021, 100(42): e27569.
[6] [6] MONTEMURRO C, NOMOTO H, PEI L, et al. IAPP toxicity activates HIF1/PFKFB3 signaling delaying -cell loss at the expense of -cell function[J]. Nature Communications, 2019, 10: 2679.
[7] [7] MACDONALD M J, LONGACRE M J, LANGBERG E C, et al. Decreased levels of metabolic enzymes in pancreatic islets of patients with type 2 diabetes[J]. Diabetologia, 2009, 52(6): 1087-1091.
[9] [9] RUSDIANA R, MORADI A, WIDJAJA S S, et al. The effect of hypoxia inducible factor-1 alpha and vascular endothelial growth factor level in type 2 diabetes microvascular complications and development[J]. Medical Archives (Sarajevo, Bosnia and Herzegovina), 2022, 76(2): 135-139.
[10] [10] HADDAD D, DSOUZA V S, AL-MULLA F, et al. New-generation glucokinase activators: potential game-changers in type 2 diabetes treatment[J]. International Journal of Molecular Sciences, 2024, 25(1): 571.
[11] [11] RUTTER G A, GEORGIADOU E, MARTINEZ-SANCHEZ A, et al. Metabolic and functional specialisations of the pancreatic beta cell: gene disallowance, mitochondrial metabolism and intercellular connectivity[J]. Diabetologia, 2020, 63(10): 1990-1998.
[12] [12] TOULIS K A, NIRANTHARAKUMAR K, POURZITAKI C, et al. Glucokinase activators for type 2 diabetes: challenges and future developments[J]. Drugs, 2020, 80(5): 467-475.
[13] [13] BAE J S, KIM T H, KIM M Y, et al. Transcriptional regulation of glucose sensors in pancreatic -cells and liver: an update[J]. Sensors (Basel, Switzerland), 2010, 10(5): 5031-5053.
[14] [14] FEX M, NICHOLAS L M, VISHNU N, et al. The pathogenetic role of -cell mitochondria in type 2 diabetes[J]. Journal of Endocrinology, Bioscientifica Ltd, 2018, 236(3): R145-R159.
[15] [15] OMORI K, NAKAMURA A, MIYOSHI H, et al. Glucokinase inactivation paradoxically ameliorates glucose intolerance by increasing -cell mass in db/db mice[J]. Diabetes, 2021, 70(4): 917-931.
[16] [16] BHARGAVA P, SCHNELLMANN R G. Mitochondrial energetics in the kidney[J]. Nature Reviews Nephrology, 2017, 13(10): 629-646.
[17] [17] TANNAHILL G M, CURTIS A M, ADAMIK J, et al. Succinate is an inflammatory signal that induces IL-1 through HIF-1[J]. Nature, 2013, 496(7444): 238-242.
[18] [18] SCIACOVELLI M, GUZZO G, MORELLO V, et al. The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase[J]. Cell Metabolism, 2013, 17(6): 988-999.
[19] [19] BATIE M, FASANYA T, KENNETH N S, et al. Oxygen-regulated post-translation modifications as master signalling pathway in cells[J]. EMBO Reports, 2023, 24(12): e57849.
[21] [21] YFANTIS A, MYLONIS I, CHACHAMI G, et al. Transcriptional response to hypoxia: the role of HIF-1-associated co-regulators[J]. Cells, 2023, 12(5): 798.
[22] [22] LUO W, HU H, CHANG R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1[J]. Cell, 2011, 145(5): 732-744.
[23] [23] SEMENZA G L. HIF-1: upstream and downstream of cancer metabolism[J]. Current Opinion in Genetics & Development, 2010, 20(1): 51-56.
[24] [24] KIM J, TCHERNYSHYOV I, SEMENZA G L, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia[J]. Cell Metabolism, 2006, 3(3): 177-185.
[25] [25] FERNANDES J L, MARTINS F O, OLEA E, et al. Chronic intermittent hypoxia-induced dysmetabolism is associated with hepatic oxidative stress, mitochondrial dysfunction and inflammation[J]. Antioxidants, 2023, 12(11): 1910.
[26] [26] SHILLEH A H, RUSS H A. Cell replacement therapy for type 1 diabetes patients: potential mechanisms leading to stem-cell-derived pancreatic -cell loss upon transplant[J]. Cells, 2023, 12(5): 698.
[27] [27] COSIN-ROGER J, SIMMEN S, MELHEM H, et al. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation[J]. Nature Communications, 2017, 8: 98.
[28] [28] YI M, BAN Y, TAN Y, et al. 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 and 4: a pair of valves for fine-tuning of glucose metabolism in human cancer[J]. Molecular Metabolism, 2018, 20: 1-13.
[29] [29] STERNISHA S M, MILLER B G. Molecular and cellular regulation of human glucokinase[J]. Archives of Biochemistry and Biophysics, 2019, 663: 199-213.
[30] [30] MIN J, ZENG T, ROUX M, et al. The role of HIF1-PFKFB3 pathway in diabetic retinopathy[J]. The Journal of Clinical Endocrinology and Metabolism, 2021, 106(9): 2505-2519.
[31] [31] MIN J, MA F, SEYRAN B, et al. -cell-specific deletion of PFKFB3 restores cell fitness competition and physiological replication under diabetogenic stress[J]. Communications Biology, 2022, 5(1): 1-13.
[32] [32] NOMOTO H, PEI L, MONTEMURRO C, et al. Activation of the HIF1/PFKFB3 stress response pathway in beta cells in type 1 diabetes[J]. Diabetologia, 2020, 63(1): 149-161.
[33] [33] MIAO R, FANG X, WEI J, et al. Akt: a potential drug target for metabolic syndrome[J]. Frontiers in Physiology, 2022, 13: 822333.
[34] [34] HOSIOS A M, MANNING B D. Cancer signaling drives cancer metabolism: AKT and the warburg effect[J]. Cancer Research, 2021, 81(19): 4896-4898.
[35] [35] INOKI K, KIM J, GUAN K L. AMPK and mTOR in cellular energy homeostasis and drug targets[J]. Annual Review of Pharmacology and Toxicology, 2012, 52: 381-400.
[36] [36] SHARMA A, ANAND S K, SINGH N, et al. AMP-activated protein kinase: an energy sensor and survival mechanism in the reinstatement of metabolic homeostasis[J]. Experimental Cell Research, 2023, 428(1): 113614.
[37] [37] LE Q V, WEN S Y, CHEN C J, et al. Reversion of glucocorticoid-induced senescence and collagen synthesis decrease by LY294002 is mediated through p38 in skin[J]. International Journal of Biological Sciences, Ivyspring International Publisher, 2022, 18(16): 6102.
[38] [38] LI B, ZHANG X, REN Q, et al. NVP-BEZ235 inhibits renal cell carcinoma by targeting TAK1 and PI3K/Akt/mTOR pathways[J]. Frontiers in Pharmacology, 2022, 12: 781623.
[39] [39] LYPOVA N, TELANG S, CHESNEY J, et al. Increased 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase-3 activity in response to EGFR signaling contributes to non-small cell lung cancer cell survival[J]. The Journal of Biological Chemistry, 2019, 294(27): 10530-10543.
[40] [40] ZHUANG P, WANG D, ZHANG K, et al. Sorafenib promotes hepatocellular carcinoma invasion via interleukin-6/HIF-1/PFKFB3[J]. Journal of Cancer, 2023, 14(10): 1859-1874.
[41] [41] DE LOS PINOS E, FERNNDEZ DE MATTOS S, JOAQUIN M, et al. Insulin inhibits glucocorticoid-stimulated L-type 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase gene expression by activation of the c-Jun N-terminal kinase pathway[J]. The Biochemical Journal, 2001, 353(Pt 2): 267-273.
[42] [42] HE X, ZENG H, CHEN S T, et al. Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction[J]. Journal of Molecular and Cellular Cardiology, 2017, 112: 104-113.
[43] [43] ZENG H, CHEN J X. Sirtuin 3, endothelial metabolic reprogramming, and heart failure with preserved ejection fraction[J]. Journal of Cardiovascular Pharmacology, 2019, 74(4): 315-323.
[44] [44] BOTUSAN I R, SUNKARI V G, SAVU O, et al. Stabilization of HIF-1 is critical to improve wound healing in diabetic mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(49): 19426-19431.
[45] [45] XIANG M, LU Y, XIN L, et al. Role of oxidative stress in reperfusion following myocardial ischemia and its treatments[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021: 6614009.
[46] [46] PAREDES F, WILLIAMS H C, MARTIN A S. Metabolic adaptation in hypoxia and cancer[J]. Cancer Letters, 2021, 502: 133-142.
[47] [47] ZHAO Y, XIONG W, LI C, et al. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 431.
[48] [48] CAVAGHAN M K, EHRMANN D A, POLONSKY K S. Interactions between insulin resistance and insulin secretion in the development of glucose intolerance[J]. The Journal of Clinical Investigation, 2000, 106(3): 329-333.
[49] [49] SATO Y, INOUE M, YOSHIZAWA T, et al. Moderate hypoxia induces -cell dysfunction with HIF-1-independent gene expression changes[J]. PLoS One, 2014, 9(12): e114868.
[50] [50] BENSELLAM M, JONAS J C, LAYBUTT D R. Mechanisms of -cell dedifferentiation in diabetes: recent findings and future research directions[J]. The Journal of Endocrinology, 2018, 236(2): R109-R143.
[51] [51] NORDMANN T M, DROR E, SCHULZE F, et al. The role of inflammation in -cell dedifferentiation[J]. Scientific Reports, 2017, 7(1): 6285.
[52] [52] GUO S, DAI C, GUO M, et al. Inactivation of specific cell transcription factors in type 2 diabetes[J]. The Journal of Clinical Investigation, 2013, 123(8): 3305-3316.
[53] [53] YOU S, ZHENG J, CHEN Y, et al. Research progress on the mechanism of beta-cell apoptosis in type 2 diabetes mellitus[J]. Frontiers in Endocrinology, 2022, 13: 976465.
[54] [54] KNAPP M, TU X, WU R. Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy[J]. Acta Pharmacologica Sinica, 2019, 40(1): 1-8.
[55] [55] RORSMAN P, ASHCROFT F M. Pancreatic -cell electrical activity and insulin secretion: of mice and men[J]. Physiological Reviews, 2018, 98(1): 117-214.
[56] [56] GURLO T, COSTES S, HOANG J D, et al. cell-specific increased expression of calpastatin prevents diabetes induced by islet amyloid polypeptide toxicity[J]. JCI Insight, 2016, 1(18): e89590.
[57] [57] WINTER J M, YADAV T, RUTTER J. Stressed to death: mitochondrial stress responses connect respiration and apoptosis in cancer[J]. Molecular Cell, 2022, 82(18): 3321-3332.
[58] [58] DIRKS A J, HOFER T, MARZETTI E, et al. Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle[J]. Ageing Research Reviews, 2006, 5(2): 179-195.
[59] [59] KUO I Y, BRILL A L, LEMOS F O, et al. Polycystin 2 regulates mitochondrial Ca2+ signaling, bioenergetics, and dynamics through mitofusin 2[J]. Science Signaling, 2019, 12(580): eaat7397.
[60] [60] MATSCHINSKY F M, WILSON D F. The central role of glucokinase in glucose homeostasis: a perspective 50 years after demonstrating the presence of the enzyme in islets of langerhans[J]. Frontiers in Physiology, Frontiers Media SA, 2019, 10: 148.
[61] [61] NISHIKAWA T, BELLANCE N, DAMM A, et al. A switch in the source of ATP production and a loss in capacity to perform glycolysis are hallmarks of hepatocyte failure in advance liver disease[J]. Journal of Hepatology, 2014, 60(6): 1203-1211.
[62] [62] MALMGREN S, NICHOLLS D G, TANEERA J, et al. Tight coupling between glucose and mitochondrial metabolism in clonal -cells is required for robust insulin secretion[J]. Journal of Biological Chemistry, 2009, 284(47): 32395-32404.
[64] [64] WANG P, LIU H, CHEN L, et al. Effects of a novel glucokinase activator, HMS5552, on glucose metabolism in a rat model of type 2 diabetes mellitus[J]. Journal of Diabetes Research, 2017, 2017: 5812607.
[65] [65] HAYTHORNE E, ROHM M, VAN DE BUNT M, et al. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic -cells[J]. Nature Communications, 2019, 10: 2474.
[66] [66] ROJAS J, BERMUDEZ V, PALMAR J, et al. Pancreatic beta cell death: novel potential mechanisms in diabetes therapy[J]. Journal of Diabetes Research, 2018, 2018: 9601801.
[67] [67] BROOKS-WORRELL B, PALMER J P. Immunology in the clinic review series; focus on metabolic diseases: development of islet autoimmune disease in type 2 diabetes patients: potential sequelae of chronic inflammation[J]. Clinical and Experimental Immunology, 2012, 167(1): 40-46.
[68] [68] LI H S, ZHOU Y N, LI L, et al. HIF-1 protects against oxidative stress by directly targeting mitochondria[J]. Redox Biology, 2019, 25: 101109.
[70] [70] MOIN A S M, BUTLER A E. Alterations in beta cell identity in type 1 and type 2 diabetes[J]. Current Diabetes Reports, 2019, 19(9): 83.
[72] [72] COURTNEY M, GJERNES E, DRUELLE N, et al. The inactivation of Arx in pancreatic -cells triggers their neogenesis and conversion into functional -like cells[J]. PLoS Genetics, 2013, 9(10): e1003934.
[73] [73] TALCHAI C, XUAN S, LIN H V, et al. Pancreatic cell dedifferentiation as a mechanism of diabetic cell failure[J]. Cell, 2012, 150(6): 1223-1234.
[74] [74] TANG Y, ZHU J, HUANG D, et al. Mandibular osteotomy-induced hypoxia enhances osteoclast activation and acid secretion by increasing glycolysis[J]. Journal of Cellular Physiology, 2019, 234(7): 11165-11175.
[75] [75] ZHU X X, ZHU D L, LI X Y, et al. Dorzagliatin (HMS5552), a novel dual-acting glucokinase activator, improves glycaemic control and pancreatic -cell function in patients with type 2 diabetes: a 28-day treatment study using biomarker-guided patient selection[J]. Diabetes, Obesity & Metabolism, 2018, 20(9): 2113-2120.
[76] [76] DINI S, JOVANOVI J A, USKOKOVI A, et al. Oxidative stress-mediated beta cell death and dysfunction as a target for diabetes management[J]. Frontiers in Endocrinology, Frontiers Media SA, 2022, 13: 1006376.
[77] [77] PURI S, ROY N, RUSS H A, et al. Replication confers cell immaturity[J]. Nature Communications, 2018, 9(1): 485.
[78] [78] HALLAKOU-BOZEC S, VIAL G, KERGOAT M, et al. Mechanism of action of imeglimin: a novel therapeutic agent for type 2 diabetes[J]. Diabetes, Obesity & Metabolism, 2021, 23(3): 664-673.
[79] [79] YADAV S, BHARTI S, MATHUR P. GlucoKinaseDB: a comprehensive, curated resource of glucokinase modulators for clinical and molecular research[J]. Computational Biology and Chemistry, 2023, 103: 107818.
[80] [80] WU M, CHEN W, MIAO M, et al. Anti-anemia drug FG4592 retards the AKI-to-CKD transition by improving vascular regeneration and antioxidative capability[J]. Clinical Science, 2021, 135(14): 1707-1726.
[81] [81] WANG L, GAO X, TANG X, et al. SENP1 protects cisplatin-induced AKI by attenuating apoptosis through regulation of HIF-1[J]. Experimental Cell Research, 2022, 419(1): 113281.
[82] [82] YANG Y, YU X, ZHANG Y, et al. Hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) protects against cisplatin-induced acute kidney injury[J]. Clinical Science, 2018, 132(7): 825-838.
[83] [83] FROST J, GALDEANO C, SOARES P, et al. Potent and selective chemical probe of hypoxic signalling downstream of HIF- hydroxylation via VHL inhibition[J]. Nature Communications, 2016, 7: 13312.
[84] [84] BURSLEM G M, KYLE H F, NELSON A, et al. Hypoxia inducible factor (HIF) as a model for studying inhibition of protein-protein interactions[J]. Chemical Science, 2017, 8(6): 4188-4202.
[85] [85] JING X L, CHEN S W. Aurora kinase inhibitors: a patent review (2014-2020)[J]. Expert Opinion on Therapeutic Patents, 2021, 31(7): 625-644.
[86] [86] RAMOS H, CALHEIROS J, ALMEIDA J, et al. SLMP53-1 inhibits tumor cell growth through regulation of glucose metabolism and angiogenesis in a P53-dependent manner[J]. International Journal of Molecular Sciences, 2020, 21(2): 596.
[87] [87] THOMAS J L, PHAM H, LI Y, et al. Hypoxia-inducible factor-1 activation improves renal oxygenation and mitochondrial function in early chronic kidney disease[J]. American Journal of Physiology - Renal Physiology, 2017, 313(2): F282-F290.
[88] [88] LI J, WEI G, LIU G, et al. Regulating type H vessel formation and bone metabolism via bone‐targeting oral micro/nano-hydrogel microspheres to prevent bone loss[J]. Advanced Science, 2023, 10(15): 2207381.
[89] [89] JIANG N, ZHAO H, HAN Y, et al. HIF-1 ameliorates tubular injury in diabetic nephropathy via HO-1-mediated control of mitochondrial dynamics[J]. Cell Proliferation, 2020, 53(11): e12909.
[90] [90] WANG X, SUN L, GUAN S, et al. Cyclin-dependent kinase 5 inhibitor attenuates lipopolysaccharide-induced neuroinflammation through metabolic reprogramming[J]. European Journal of Pharmacology, 2022, 929: 175118.
Get Citation
Copy Citation Text
WEI Haoyue, ZHANG Xi, WEI Daihao, LI Huan, WANG Rui, HUANG Yanqin. HIF-1α/PFKFB3 Signaling Pathway Mediates GK Regulation of Islets in Type 2 Diabetes β Progress in Cellular Function Research[J]. Acta Laser Biology Sinica, 2024, 33(6): 512
Category:
Received: Jan. 22, 2024
Accepted: Feb. 27, 2025
Published Online: Feb. 27, 2025
The Author Email: Yanqin HUANG (dahuang79@126.com)