High Power Laser and Particle Beams, Volume. 35, Issue 5, 055005(2023)
Microfluidic plasma: novel process intensification technique
[5] Sureshkumar A, Sankar R, Mandal M, et al. Effective bacterial inactivation using low temperature radio frequency plasma[J]. International Journal of Pharmaceutics, 396, 17-22(2010).
[10] Lin Liangliang, Starostin S A, Li Sirui, et al. Synthesis of metallic nanoparticles by microplasma[J]. Physical Sciences Reviews, 3, 20170121(2018).
[16] [16] Yan Tingting. Atmospheric pressure microplasma sythesis of nanoparticles[D]. Shanghai: Shanghai Jiao Tong University, 2017
[39] Rui Lichen, Pang Zining, Li Xuanhe, . Liquid plasmas and their applications in nanomaterial synthesis[J]. High Power Laser and Particle Beams, 34, 069001(2022).
[42] Edengeiser E, Lackmann J W, Bründermann E, et al. Synergistic effects of atmospheric pressure plasma-emitted components on DNA oligomers: a Raman spectroscopic study[J]. Journal of Biophotonics, 8, 918-924(2015).
[43] [43] Lackmann J W, Schneider S, Narberhaus F, et al. acterization of bacterial biomacromolecule damage by (V)UV particle channels of Xmicroscale atmospheric pressure plasma jet(XAPPJ)[J]. 2011, 27: 8788.
[45] [45] Yamanishi Y, Sameshima S, Kuriki H, et al. Transptation of monodispersed microplasma bubble in microfluidic chip under atmospheric pressure[C]Transducers & Eurosenss XXVII: The 17th International Conference on SolidState Senss, Actuats Microsystems. 2013: 17951798.
[46] Wengler J, Ognier S, Zhang Mengxue, et al. Microfluidic chips for plasma flow chemistry: application to controlled oxidative processes[J]. Reaction Chemistry & Engineering, 3, 930-941(2018).
[67] [67] Yu Yashen, Kuo L H, Wu M C, et al. A novel fabrication of PDMS chip using atmospheric pressure plasma jet: hyhobicity modification feasibility test[C]IEEERSJ International Conference on Intelligent Robots Systems. 2018: 278283.
[69] Liu Feng, Cai Meiling, Zhang Bo, et al. Hydrophobic surface modification of polymethyl methacrylate by two-dimensional plasma jet array at atmospheric pressure[J]. Journal of Vacuum Science & Technology A, 36, 061302(2018).
[74] Comini E. Metal oxide nano-crystals for gas sensing[J]. Analytica Chimica Acta, 568, 28-40(2006).
[83] Li Xuanhe, Lin Liangliang, Chiang W H, et al. Microplasma synthesized gold nanoparticles for surface enhanced Raman spectroscopic detection of methylene blue[J]. Reaction Chemistry & Engineering, 7, 346-353(2022).
[87] Lin Liangliang, Li Xuanhe, Gao Haiyan, et al. Microfluidic plasma-based continuous and tunable synthesis of Ag–Au nanoparticles and their SERS properties[J]. Industrial & Engineering Chemistry Research, 61, 2183-2194(2022).
[89] [89] Benedikt J, Reuter R, Ellerweg D, et al. Deposition of SiOx films by means of atmospheric pressure microplasma jets[DBOL]. arXiv preprint arXiv: 1105.2691, 2011.
[90] [90] Patinglag L. Development of a microfluidic atmosphericpressure plasma react f water treatment[D]. Manchester, UK: Manchester Metropolitan University, 2019.
[92] [92] Jansen F. Effects of nonthermal atmospheric pressure plasma on human fibroblasts[D]. Nth Rhine Westphalia, Germany: HeinrichHeineUniversitaet Duesseldf, 2021.
[94] Misra N N, Jo C. Applications of cold plasma technology for microbiological safety in meat industry[J]. Trends in Food Science & Technology, 64, 74-86(2017).
Get Citation
Copy Citation Text
Ziyi Zhang, Yunming Tao, Ming Gao, Zhanghao Chen, Liangliang Lin. Microfluidic plasma: novel process intensification technique[J]. High Power Laser and Particle Beams, 2023, 35(5): 055005
Category:
Received: Oct. 10, 2022
Accepted: --
Published Online: May. 6, 2023
The Author Email: