Laser & Infrared, Volume. 54, Issue 10, 1642(2024)

Research on unsupervised anomaly detection algorithm for point cloud and image fusion

XIE Hong-xing1,2, LIN Shan-ling1,2, LIN Zhi-xian1,2、*, GUO Tai-liang2, LIN Jian-pu1,2, and LV Shan-hong1,2
Author Affiliations
  • 1School of Advanced Manufacturing, Fuzhou University, Quanzhou 362251, China
  • 2Fujian Science and Technology Innovation Laboratory for Photoelectric Information, Fuzhou 350116, China
  • show less
    References(10)

    [1] [1] Bergmann P, Jin X, Sattlegger D, et al. The MVTec 3D-AD dataset for unsupervised 3D anomaly detection and localization[J/OL]. https://arXiv.org/abs/2112.09045.

    [3] [3] Kingma D P, Dhariwal P. Glow: generative flow with invertible 1x1 convolutions[J/OL]. https://arXiv.org/abs/1807.03039.

    [5] [5] Wang G, Han S, Ding E, et al. Student-teacher feature pyramid matching for unsupervised anomaly detection[J]. arXiv, 2021: arXiv.210304257.

    [7] [7] Zavrtanik V, Kristan M, SKOAJ D. Reconstruction by inpainting for visual anomaly detection[J]. Pattern Recognition, 2021, 112: 107706.

    [8] [8] Yu J, Zheng Y, Wang X, et al. FastFlow: unsupervised anomaly detection and localization via 2D normalizing flows[J/OL] https://arXiv.org/abs/2111.07677v2.

    [10] [10] Yoshuabengio L D. Nice: Non-linear independent components estimation[J]. arXiv e-prints, 2014: arXiv 1410.8516.

    [12] [12] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.

    [13] [13] Dinh L, Sohl-Dickstein J, Bengio S. Density estimation using Real NVP[C]//International Conference on Learning Representations.2016.

    [14] [14] Bergmann P, Jin X, Sattlegger D, et al. The MVTec 3D-AD dataset for unsupervised 3D anomaly detection and localization[C]//Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2022: 202-213.

    [15] [15] Hrwitz E, Hoshen Y. Back to the feature: classical 3D features are (almost) all you need for 3D anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023: 2967-2976.

    Tools

    Get Citation

    Copy Citation Text

    XIE Hong-xing, LIN Shan-ling, LIN Zhi-xian, GUO Tai-liang, LIN Jian-pu, LV Shan-hong. Research on unsupervised anomaly detection algorithm for point cloud and image fusion[J]. Laser & Infrared, 2024, 54(10): 1642

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 11, 2023

    Accepted: Apr. 23, 2025

    Published Online: Apr. 23, 2025

    The Author Email: LIN Zhi-xian (lzx2005000@163.com)

    DOI:10.3969/j.issn.1001-5078.2024.10.020

    Topics