Chinese Journal of Lasers, Volume. 50, Issue 24, 2402304(2023)
Basic Process of New Directional Solidification Nickel‑Based Superalloy Fabricated by Laser Powder Bed Fusion
[1] Pierret S, Evans A, Paradowska A M et al. Combining neutron diffraction and imaging for residual strain measurements in a single crystal turbine blade[J]. NDT & E International, 45, 39-45(2012).
[2] Li J K, Zhang Z W, Yang Y Q et al. Crystal orientation and microstructure of DD91 nickel-based single crystal superalloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 49, 1402103(2022).
[3] Nkoi B, Pilidis P, Nikolaidis T. Performance of small-scale aero-derivative industrial gas turbines derived from helicopter engines[J]. Propulsion and Power Research, 2, 243-253(2013).
[4] Liu W W, Zhang D H, Shi Y Y et al. Study on net-shape NC machinging technology of thin-balde of aeroengine[J]. Mechanical Science and Technology, 23, 329-331(2004).
[5] Liu L, Zhang J, Shen J et al. Advances in directional solidification techniques of superalloys[J]. Materials China, 29(2010).
[6] Liu L, Sun D J, Huang T W et al. Directional solidification under high thermal gradient and its application in superalloys processing[J]. Acta Metallurgica Sinica, 54, 615-626(2018).
[7] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).
[8] Wen S F, Ji X T, Zhou Y et al. Development status and prospect of selective laser melting of mould steels[J]. Laser & Optoelectronics Progress, 55, 011404(2018).
[9] Phan M A L, Fraser D, Gulizia S et al. Horizontal growth direction of dendritic solidification during selective electron beam melting of a Co-based alloy[J]. Materials Letters, 228, 242-245(2018).
[10] Khairallah S A, Anderson A. Mesoscopic simulation model of selective laser melting of stainless steel powder[J]. Journal of Materials Processing Technology, 214, 2627-2636(2014).
[11] Jiang H Z, Fang J H Y, Chen Q S et al. State of the art of selective laser melted 316L stainless steel: process, microstructure, and mechanical properties[J]. Chinese Journal of Lasers, 49, 1402804(2022).
[12] Li S. Basic study on microstructure and properties evolution of nickel-based superalloy formed by laser selective melting[D](2017).
[13] Carter L N, Martin C, Withers P J et al. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy[J]. Journal of Alloys and Compounds, 615, 338-347(2014).
[14] Pan A Q, Zhang H, Wang Z M. Molten pool microstructure of Ni-based single crystal superalloys fabricated by selective laser melting[J]. Laser & Optoelectronics Progress, 54, 071402(2017).
[15] Pan A Q, Zhang H, Wang Z M. Process parameters and microstructure of Ni-based single crystal superalloy processed by selective laser melting[J]. Chinese Journal of Lasers, 46, 1102007(2019).
[16] Simchi A. Direct laser sintering of metal powders: mechanism, kinetics and microstructural features[J]. Materials Science and Engineering: A, 428, 148-158(2006).
[17] Ghaini F M, Sheikhi M, Torkamany M J et al. The relation between liquation and solidification cracks in pulsed laser welding of 2024 aluminium alloy[J]. Materials Science and Engineering: A, 519, 167-171(2009).
[18] Hatami N, Babaei R, Dadashzadeh M et al. Modeling of hot tearing formation during solidification[J]. Journal of Materials Processing Technology, 205, 506-513(2008).
[19] Bian P Y, Yin E H. Effect of laser power for metal selective laser melting on morphology of 316L stainless steel molten pool and residual stress[J]. Laser & Optoelectronics Progress, 57, 011403(2020).
[20] Norman A F, Drazhner V, Prangnell P B. Effect of welding parameters on the solidification microstructure of autogenous TIG welds in an Al-Cu-Mg-Mn alloy[J]. Materials Science and Engineering: A, 259, 53-64(1999).
[21] Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science and Engineering, 65, 75-83(1984).
[22] Chen Y, Chen H, Chen J Q et al. Numerical and experimental investigation on thermal behavior and microstructure during selective laser melting of high strength steel[J]. Journal of Manufacturing Processes, 57, 533-542(2020).
[23] Hu J, Shi Y N, Sauvage X et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals[J]. Science, 355, 1292-1296(2017).
[24] Zhang H, Zhu H H, Nie X J et al. Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. Scripta Materialia, 134, 6-10(2017).
[25] Chen Q Z, Jones N, Knowles D M. The microstructures of base/modified RR2072 SX superalloys and their effects on creep properties at elevated temperatures[J]. Acta Materialia, 50, 1095-1112(2002).
[26] Yu Z H, Zhang Y, Zhai Y N et al. The research progress of the role of C, B and Hf in nickel-based superalloy[J]. Foundry, 66, 1076-1081(2017).
[27] Han G M, Yang Y H, Yu J J et al. Temperature dependence of anisotropic stress-rupture properties of nickel-based single crystal superalloy SRR99[J]. Transactions of Nonferrous Metals Society of China, 21, 1717-1721(2011).
[28] Liang Y J, Li J, Li A et al. Experimental optimization of laser additive manufacturing process of single-crystal nickel-base superalloys by a statistical experiment design method[J]. Journal of Alloys and Compounds, 697, 174-181(2017).
[29] Liang J J, Yang Y H, Zhou Y Z et al. Microstructures of nickel-base single-crystal superalloy prepared by laser solid forming[J]. Rare Metal Materials and Engineering, 46, 3753-3759(2017).
[30] Cui H B, Guo J J, Bi W S et al. The evolution of unidirectional solidification microstructure of the Al-In monotectic alloys in high temperature gradient[J]. Acta Metallrugica Sinica, 40, 1253-1256(2004).
[32] Meng X, Tian X J, Cheng X et al. Microstructure and heating treatment of DZ40M prepared by laser additive manufacturing[J]. Chinese Journal of Lasers, 45, 1002008(2018).
[33] Rappaz M, Gandin C A. Probabilistic modelling of microstructure formation in solidification processes[J]. Acta Metallurgica et Materialia, 41, 345-360(1993).
[34] Gandin C A, Rappaz M. A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[J]. Acta Metallurgica et Materialia, 42, 2233-2246(1994).
[36] Sengupta A, Putatunda S K, Bartosiewicz L et al. Tensile behavior of a new single-crystal nickel-based superalloy (CMSX-4) at room and elevated temperatures[J]. Journal of Materials Engineering and Performance, 3, 73-81(1994).
[37] Song R J, Ponge D, Raabe D. Influence of Mn content on the microstructure and mechanical properties of ultrafine grained C-Mn steels[J]. ISIJ International, 45, 1721-1726(2005).
Get Citation
Copy Citation Text
Runsen Zhou, Kaiwen Wei, Jingjing Liang, Jia Chen, Gaohang Li, Liang Qu, Mengna Liu, Xiangyou Li, Xiaofeng Sun, Xiaoyan Zeng. Basic Process of New Directional Solidification Nickel‑Based Superalloy Fabricated by Laser Powder Bed Fusion[J]. Chinese Journal of Lasers, 2023, 50(24): 2402304
Category: Laser Additive Manufacturing
Received: Mar. 29, 2023
Accepted: Jun. 13, 2023
Published Online: Oct. 24, 2023
The Author Email: Wei Kaiwen (Laser_wei@hust.edu.cn)