High Power Laser and Particle Beams, Volume. 34, Issue 10, 104010(2022)

A very compact inverse Compton scattering gamma-ray source

Yingchao Du1, Han Chen1, Hongze Zhang1, Qiang Gao1, Qili Tian1, Zhijun Chi2, Zhi Zhang1, Hao Zha1, Jiaru Shi1, Lixin Yan1, Rui Qiu1, Cheng Cheng1, Taibin Du1, Renkai Li1, Huaibi Chen1, Wenhui Huang1, and Chuanxiang Tang1、*
Author Affiliations
  • 1Department of Engineering Physics, Tsinghua University, Beijing 100084, China
  • 2College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
  • show less
    Figures & Tables(21)
    Schematic diagram of the very compact inverse Compton scattering gamma-ray source (VIGAS)
    Layout of the accelerator in VIGAS
    Relation between bunch length and emittance plus energy spread after optimization
    Pareto front of emittance and bunch length with 200 pC bunch charge and 500 pC bunch charge
    Beam dynamics simulation results in the case of 200 pC bunch charge
    Bunch energy and emittance versus the ratio of acceleration gradient
    Photon energy versus the ratio of acceleration gradient
    Block diagram of driving laser shaping design
    Block diagram of scattering laser design
    Simulated photon yield at different photon energy
    Photon bandwidth and the proportion within the collection angle versus the collection angle
    Photon spectroscopy within different collection angles using 800 nm scattering laser
    Photon spectroscopy within different collection angles using 400 nm scattering laser
    Photon spectroscopy in simulation taking jitter into consideration
    • Table 1. Performance parameters of VIGAS

      View table
      View in Article

      Table 1. Performance parameters of VIGAS

      parametervalue
      γ ray photon energycontinuously adjustable between 0.2~4.8 MeV
      relative bandwidth (RMS)/%<1.5 (after collimation)
      photon yield/(photons·s−1) >4.0×108@0.2~2.4 MeV;>1.0×108@2.4~4.8 MeV
      photon yield within 1.5% bandwidth>4.0×106@0.2~2.4 MeV; >1.0×106@2.4~4.8 MeV
      degree of polarizationadjustable from linear to circular polarization
    • Table 2. Parameters of electron beam in VIGAS

      View table
      View in Article

      Table 2. Parameters of electron beam in VIGAS

      parametervalue
      bunch energy/MeV50~350
      bunch charge/pC>200
      normalized emittance/(mm·mrad)<0.6
      bunch length/ps<2
      energy spread/%<0.3
      focused spot size/µm<20
      repetition rate/Hz10
    • Table 3. Parameters of scattering laser in VIGAS

      View table
      View in Article

      Table 3. Parameters of scattering laser in VIGAS

      parametervalue
      800 nm400 nm
      bandwidth/nm<15<8
      pulse energy/J>1.5>0.8
      pulse length (FWHM)/ps<10
      focused spot size (RMS)/μm<10
    • Table 4. Variable parameters in the optimization

      View table
      View in Article

      Table 4. Variable parameters in the optimization

      parametersrangeoptimization result
      200 pC500 pC
      laser duration/ps[4, 20]7.277.09
      laser beam size (RMS)/mm[0.2, 2]0.20.33
      launch phase/(°)[−20, 20]5.43.0
      gun solenoid strength/T[0.15, 0.35]0.20240.2018
      gun solenoid center/m[0.213 7, 0.213 7]0.21370.2137
      buncher field strength/(MV·m−1) [20, 50]36.143.4
      buncher center/m[0.73, 0.9]0.96650.9665
      buncher phase/(°)[−110, −80]−100−98.5
      linac center/m[1.5, 2]2.4022.402
      linac solenoid center/m[1.5, 2]1.61.6
      linac solenoid strength/T[0, 0.2]0.08040.109
    • Table 5. Optimized beam parameters with 200 pC bunch charge and 500 pC bunch charge

      View table
      View in Article

      Table 5. Optimized beam parameters with 200 pC bunch charge and 500 pC bunch charge

      normalized emittance/(μm·rad)bunch length (RMS)/mmbunch energy/MeVenergy spread (RMS)/MeVbunch charge/pC
      0.2940.208361.30.45200
      0.6230.202361.50.40500
    • Table 6. Parameters of the driving laser system

      View table
      View in Article

      Table 6. Parameters of the driving laser system

      parametersvalue
      central wavelength/nm267
      repetition rate/Hz10
      pulse energy/μJ2~500
      pulse width (FWHM)/ps5-10
      rising and falling edge (10%~90%)/ps1.0
      beam size (RMS)/mm0.2~2
      energy jitter (RMS)/%<2.0
      time jitter between RF and laser (RMS)/ps<0.1
    • Table 7. Parameter jitter range in the joint parameter sweep

      View table
      View in Article

      Table 7. Parameter jitter range in the joint parameter sweep

      parametersjitter range
      bunch charge/%$ \pm 2 $
      laser duration/%$ \pm 2 $
      laser beam size/%$ \pm 2 $
      gun field strength/%$ \pm 0.1 $
      gun phase$ \pm 0.5 $
      buncher field strength/%$ \pm 0.1 $
      buncher phase$ \pm 0.5 $
      S band linac field strength/%$ \pm 0.1$
      S band linac phase$ \pm 0.5 $
      X band linac field strength/%$ \pm 0.1 $
      X band linac phase$ \pm 1 $
      scattering laser pulse energy/%$ \pm 2$
      relative position between electron and laser beam/μm$ \pm 3 $
      arrival time/ps$ \pm 0.25 $
    Tools

    Get Citation

    Copy Citation Text

    Yingchao Du, Han Chen, Hongze Zhang, Qiang Gao, Qili Tian, Zhijun Chi, Zhi Zhang, Hao Zha, Jiaru Shi, Lixin Yan, Rui Qiu, Cheng Cheng, Taibin Du, Renkai Li, Huaibi Chen, Wenhui Huang, Chuanxiang Tang. A very compact inverse Compton scattering gamma-ray source[J]. High Power Laser and Particle Beams, 2022, 34(10): 104010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Free Electron Laser and New Light Source

    Received: Apr. 29, 2022

    Accepted: --

    Published Online: Sep. 9, 2022

    The Author Email: Tang Chuanxiang (tang.xuh@mail.tsinghua.edu.cn)

    DOI:10.11884/HPLPB202234.220132

    Topics