Chinese Journal of Liquid Crystals and Displays, Volume. 35, Issue 7, 631(2020)
Near-infrared light-responsive intelligent liquid crystal nanocomposites
[1] [1] YU X L, ZHOU J. Research advance in smart metamaterials [J]. Journal of Materials Engineering, 2016, 44(7): 119-128. (in Chinese)
YU X L, ZHOU J. Research advance in smart metamaterials [J]. Journal of Materials Engineering, 2016, 44(7): 119-128. (in Chinese)
[2] [2] ZHANG X M. The research process of smart materials [J]. Fiber Reinforced Plastics/Composites, 2013(6): 57-63. (in Chinese)
ZHANG X M. The research process of smart materials [J]. Fiber Reinforced Plastics/Composites, 2013(6): 57-63. (in Chinese)
[3] [3] YU Y L. Light-responseintelligent deformation material based on liquid crystal polymer [J]. World Science, 2012(10): 44-46. (in Chinese)
YU Y L. Light-responseintelligent deformation material based on liquid crystal polymer [J]. World Science, 2012(10): 44-46. (in Chinese)
[4] [4] QING X, LV J A, YU Y L. Photodeformable liquid crystal polymers [J]. Acta Polymerica Sinica, 2017(11): 1679-1705. (in Chinese)
QING X, LV J A, YU Y L. Photodeformable liquid crystal polymers [J]. Acta Polymerica Sinica, 2017(11): 1679-1705. (in Chinese)
[5] [5] ANDRIENKO D. Introduction to liquid crystals [J]. Journal of Molecular Liquids, 2018, 267: 520-541.
ANDRIENKO D. Introduction to liquid crystals [J]. Journal of Molecular Liquids, 2018, 267: 520-541.
[6] [6] LIU J Q, GAO Y C, LEE Y J, et al. Responsive and foldable soft materials [J]. Trends in Chemistry, 2020, 2(2): 107-122.
LIU J Q, GAO Y C, LEE Y J, et al. Responsive and foldable soft materials [J]. Trends in Chemistry, 2020, 2(2): 107-122.
[7] [7] WANG L, LI Q. Photochromism into nanosystems: towards lighting up the future nanoworld [J]. Chemical Society Reviews, 2018, 47(3): 1044-1097.
WANG L, LI Q. Photochromism into nanosystems: towards lighting up the future nanoworld [J]. Chemical Society Reviews, 2018, 47(3): 1044-1097.
[8] [8] ZHENG Z G, LI Y N, BISOYI H K, et al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light [J]. Nature, 2016, 531(7594): 352-356.
ZHENG Z G, LI Y N, BISOYI H K, et al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light [J]. Nature, 2016, 531(7594): 352-356.
[9] [9] JI B, MA Y Z, FENG X Z. Study of responsive liquid crystalline material [J].Chinese Journal of Liquid Crystals and Displays, 2008, 23(6): 700-706. (in Chinese)
JI B, MA Y Z, FENG X Z. Study of responsive liquid crystalline material [J].Chinese Journal of Liquid Crystals and Displays, 2008, 23(6): 700-706. (in Chinese)
[10] [10] BISOYI H K, URBAS A M, LI Q. Soft materials driven by photothermal effect and their applications [J]. Advanced Optical Materials, 2018, 6(15): 1800458.
BISOYI H K, URBAS A M, LI Q. Soft materials driven by photothermal effect and their applications [J]. Advanced Optical Materials, 2018, 6(15): 1800458.
[11] [11] WANG L. Self-activating liquid crystal devices for smart laser protection [J].Liquid Crystals, 2016, 43(13/15): 2062-2078.
WANG L. Self-activating liquid crystal devices for smart laser protection [J].Liquid Crystals, 2016, 43(13/15): 2062-2078.
[12] [12] WANG L, URBAS AM, LI Q. Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids [J].Advanced Materials, 2018, doi: 10.1002/adma.201801335.
WANG L, URBAS AM, LI Q. Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids [J].Advanced Materials, 2018, doi: 10.1002/adma.201801335.
[13] [13] WANG L, DONG H, LI Y N, et al. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer [J]. Advanced Materials, 2015, 27(12): 2065-2069.
WANG L, DONG H, LI Y N, et al. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer [J]. Advanced Materials, 2015, 27(12): 2065-2069.
[14] [14] WANG L, DONG H, LI Y N, et al. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles [J]. Journal of the American Chemical Society, 2014, 136(12): 4480-4483.
WANG L, DONG H, LI Y N, et al. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles [J]. Journal of the American Chemical Society, 2014, 136(12): 4480-4483.
[15] [15] WANG L, GUTIERREZ-CUEVAS K G, URBAS A, et al. Near-infrared light-directed handedness inversion in plasmonic nanorod-embedded helical superstructure [J]. Advanced Optical Materials, 2016, 4(2): 247-251.
WANG L, GUTIERREZ-CUEVAS K G, URBAS A, et al. Near-infrared light-directed handedness inversion in plasmonic nanorod-embedded helical superstructure [J]. Advanced Optical Materials, 2016, 4(2): 247-251.
[16] [16] GUTIERREZ-CUEVAS K G, WANG L, XUE C M, et al. Near infrared light-driven liquid crystal phase transition enabled by hydrophobic mesogen grafted plasmonic gold nanorods [J]. Chemical Communications, 2015, 51(48): 9845-9848.
GUTIERREZ-CUEVAS K G, WANG L, XUE C M, et al. Near infrared light-driven liquid crystal phase transition enabled by hydrophobic mesogen grafted plasmonic gold nanorods [J]. Chemical Communications, 2015, 51(48): 9845-9848.
[17] [17] WANG L, BISOYI H K, ZHENG Z G, et al. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene [J]. Materials Today, 2017, 20(5): 230-237.
WANG L, BISOYI H K, ZHENG Z G, et al. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene [J]. Materials Today, 2017, 20(5): 230-237.
[18] [18] WANG H H, LIU B Z, WANG L, et al. Graphene glass inducing multidomain orientations in cholesteric liquid crystal devices toward wide viewing angles [J]. ACS Nano, 2018, 12(7): 6443-6451.
WANG H H, LIU B Z, WANG L, et al. Graphene glass inducing multidomain orientations in cholesteric liquid crystal devices toward wide viewing angles [J]. ACS Nano, 2018, 12(7): 6443-6451.
[19] [19] GUTIERREZ-CUEVAS K G, WANG L, ZHENG Z G, et al. Frequency-driven self-organized helical superstructures loaded with mesogen-grafted silica nanoparticles [J]. Angewandte Chemie International Edition, 2016, 55(42): 13090-13094.
GUTIERREZ-CUEVAS K G, WANG L, ZHENG Z G, et al. Frequency-driven self-organized helical superstructures loaded with mesogen-grafted silica nanoparticles [J]. Angewandte Chemie International Edition, 2016, 55(42): 13090-13094.
[20] [20] WANG L, LI Q. Stimuli-directing self-organized 3D liquid-crystalline nanostructures: from materials design to photonic applications [J].Advanced Functional Materials, 2016, 26(1): 10-28.
WANG L, LI Q. Stimuli-directing self-organized 3D liquid-crystalline nanostructures: from materials design to photonic applications [J].Advanced Functional Materials, 2016, 26(1): 10-28.
[22] [22] HE W L, WANG L, WANG L, et al. Wide temperature range blue phase liquid crystalline materials [J]. Progress in Chemistry, 2012, 24(1): 182-192. (in Chinese)
HE W L, WANG L, WANG L, et al. Wide temperature range blue phase liquid crystalline materials [J]. Progress in Chemistry, 2012, 24(1): 182-192. (in Chinese)
[23] [23] CHEN Y, WU S T. Recent advances on polymer-stabilized blue phase liquid crystal materials and devices [J]. Journal of Applied Polymer-Science, 2014, 131(13): 40556.
CHEN Y, WU S T. Recent advances on polymer-stabilized blue phase liquid crystal materials and devices [J]. Journal of Applied Polymer-Science, 2014, 131(13): 40556.
[24] [24] LI Y, HUANG S J, ZHOU P C, et al. Polymer-stabilized blue phase liquid crystals for photonic applications [J]. Advanced Materials Technologies, 2016, 1(8): 1600102.
LI Y, HUANG S J, ZHOU P C, et al. Polymer-stabilized blue phase liquid crystals for photonic applications [J]. Advanced Materials Technologies, 2016, 1(8): 1600102.
[25] [25] WANG M, ZOU C, SUN J,et al. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity [J]. Advanced Functional Materials, 2017, 27(46): 1702261.
WANG M, ZOU C, SUN J,et al. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity [J]. Advanced Functional Materials, 2017, 27(46): 1702261.
[26] [26] WANG L, HE W L, XIAO X, et al. Hysteresis-free blue phase liquid-crystal-stabilized by Zns nanoparticles [J]. Small, 2012, 8(14): 2189-2193.
WANG L, HE W L, XIAO X, et al. Hysteresis-free blue phase liquid-crystal-stabilized by Zns nanoparticles [J]. Small, 2012, 8(14): 2189-2193.
[27] [27] LIN T H, LI Y N, WANG C T, et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film [J]. Advanced Materials, 2013, 25(36): 5050-5054.
LIN T H, LI Y N, WANG C T, et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film [J]. Advanced Materials, 2013, 25(36): 5050-5054.
[28] [28] CHEN X W, WANG L, LI C Y, et al. Light-controllable reflection wavelength of blue phase liquid crystals doped with azobenzene-dimers [J]. Chemical Communications, 2013, 49(86): 10097-10099.
CHEN X W, WANG L, LI C Y, et al. Light-controllable reflection wavelength of blue phase liquid crystals doped with azobenzene-dimers [J]. Chemical Communications, 2013, 49(86): 10097-10099.
[29] [29] WANG L, GUTIERREZ-CUEVAS K G, BISOYI H K, et al. Nir light-directing self-organized 3D photonic superstructures loaded with anisotropic plasmonic hybrid nanorods [J]. Chemical Communications, 2015, 51(81): 15039-15042.
WANG L, GUTIERREZ-CUEVAS K G, BISOYI H K, et al. Nir light-directing self-organized 3D photonic superstructures loaded with anisotropic plasmonic hybrid nanorods [J]. Chemical Communications, 2015, 51(81): 15039-15042.
[30] [30] LIU Y Y, YU Y L. Photo-induced deformation of liquid crystalline elastomers [J]. Chinese Journal of Nature, 2013, 35(2): 127-134. (in Chinese)
LIU Y Y, YU Y L. Photo-induced deformation of liquid crystalline elastomers [J]. Chinese Journal of Nature, 2013, 35(2): 127-134. (in Chinese)
[31] [31] PANG X L, LV J A, ZHU C Y, et al. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators [J]. Advanced Materials, 2019, 31(52): 1904224.
PANG X L, LV J A, ZHU C Y, et al. Photodeformable azobenzene-containing liquid crystal polymers and soft actuators [J]. Advanced Materials, 2019, 31(52): 1904224.
[32] [32] YU H F, IKEDA T. Photocontrollable liquid-crystalline actuators [J]. Advanced Materials, 2011, 23(19): 2149-2180.
YU H F, IKEDA T. Photocontrollable liquid-crystalline actuators [J]. Advanced Materials, 2011, 23(19): 2149-2180.
[33] [33] DONG L L, ZHAO Y. Photothermally driven liquid crystal polymer actuators [J]. Materials Chemistry Frontiers, 2018, 2(11): 1932-1943.
DONG L L, ZHAO Y. Photothermally driven liquid crystal polymer actuators [J]. Materials Chemistry Frontiers, 2018, 2(11): 1932-1943.
[34] [34] ZUO B, WANG M, LIN B P, et al. Visible and infrared three-wavelength modulated multi-directional actuators [J]. Nature Communications, 2019, 10(1): 4539.
ZUO B, WANG M, LIN B P, et al. Visible and infrared three-wavelength modulated multi-directional actuators [J]. Nature Communications, 2019, 10(1): 4539.
[35] [35] ZOU X B, SHI Y Q, ZHENG Y, et al. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer effect [J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): 960-968. (in Chinese)
ZOU X B, SHI Y Q, ZHENG Y, et al. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer effect [J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): 960-968. (in Chinese)
[36] [36] LU X L, ZHANG H, FEI G X, et al. Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation [J]. Advanced Materials, 2018, 30(14): 1706597.
LU X L, ZHANG H, FEI G X, et al. Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation [J]. Advanced Materials, 2018, 30(14): 1706597.
[37] [37] HAUSER A W, LIU D Q, BRYSON K C, et al. Reconfiguring nanocomposite liquid crystal polymer films with visible light [J]. Macromolecules, 2016, 49(5): 1575-1581.
HAUSER A W, LIU D Q, BRYSON K C, et al. Reconfiguring nanocomposite liquid crystal polymer films with visible light [J]. Macromolecules, 2016, 49(5): 1575-1581.
[38] [38] KIM H, LEE J A, AMBULO C P, et al. Intelligently actuating liquid crystal elastomer-carbon nanotube composites [J]. Advanced Functional Materials, 2019, 29(48): 1905063.
KIM H, LEE J A, AMBULO C P, et al. Intelligently actuating liquid crystal elastomer-carbon nanotube composites [J]. Advanced Functional Materials, 2019, 29(48): 1905063.
[39] [39] PEI Z Q, YANG Y, CHEN Q M, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds [J]. Nature Materials, 2014, 13(1): 36-41.
PEI Z Q, YANG Y, CHEN Q M, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds [J]. Nature Materials, 2014, 13(1): 36-41.
[40] [40] YANG Y, PEI Z Q, LI Z, et al. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold [J]. Journal of the American Chemical Society, 2016, 138(7): 2118-2121.
YANG Y, PEI Z Q, LI Z, et al. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold [J]. Journal of the American Chemical Society, 2016, 138(7): 2118-2121.
[41] [41] LIU J Q, GAO Y C, WANG H H, et al. Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer-carbon nanotube composites [J]. Advanced Intelligent Systems, 2020, doi: 10.1002/aisy.201900163.
LIU J Q, GAO Y C, WANG H H, et al. Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer-carbon nanotube composites [J]. Advanced Intelligent Systems, 2020, doi: 10.1002/aisy.201900163.
[42] [42] WANG F, JIA S H, TANG Z H, et al. Research progress on light-driven technology for graphene-based nanocomposites [J]. Journal of Materials Engineering, 2018, 46(4): 12-22. (in Chinese)
WANG F, JIA S H, TANG Z H, et al. Research progress on light-driven technology for graphene-based nanocomposites [J]. Journal of Materials Engineering, 2018, 46(4): 12-22. (in Chinese)
[43] [43] YAN P, LI Z J. Synthesis of bifunctional graphene quantum dots and its application in fluorescence detection of PH and cell imaging [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 670-677. (in Chinese)
YAN P, LI Z J. Synthesis of bifunctional graphene quantum dots and its application in fluorescence detection of PH and cell imaging [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 670-677. (in Chinese)
[44] [44] DONG L L, TONG X, ZHANG H J, et al. Near-infrared light-driven locomotion of a liquid crystal polymer trilayer actuator [J]. Materials Chemistry Frontiers, 2018, 2(7): 1383-1388.
DONG L L, TONG X, ZHANG H J, et al. Near-infrared light-driven locomotion of a liquid crystal polymer trilayer actuator [J]. Materials Chemistry Frontiers, 2018, 2(7): 1383-1388.
[45] [45] WEI W Y, ZHANG Z W, WEI J, et al. Phototriggered selective actuation and self-oscillating in dual-phase liquid crystal photonic actuators [J]. Advanced Optical Materials, 2018, 6(15): 1800131.
WEI W Y, ZHANG Z W, WEI J, et al. Phototriggered selective actuation and self-oscillating in dual-phase liquid crystal photonic actuators [J]. Advanced Optical Materials, 2018, 6(15): 1800131.
[46] [46] ZHANG L S, PAN J K, LIU Y H, et al. NIR-UV Responsive actuator with graphene oxide/microchannel-induced liquid crystal bilayer structure for biomimetic devices [J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6727-6735.
ZHANG L S, PAN J K, LIU Y H, et al. NIR-UV Responsive actuator with graphene oxide/microchannel-induced liquid crystal bilayer structure for biomimetic devices [J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6727-6735.
[47] [47] LIU M Y, ZENG G J, WANG K, et al. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications [J]. Nanoscale, 2016, 8(38): 16819-16840.
LIU M Y, ZENG G J, WANG K, et al. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications [J]. Nanoscale, 2016, 8(38): 16819-16840.
[48] [48] LAN R C, SUN J, SHEN C, et al. Near-infrared photodriven self-sustained oscillation of liquid-crystalline network film with predesignated polydopamine coating [J]. Advanced Materials, 2020, doi: 10.1002/adma.201906319.
LAN R C, SUN J, SHEN C, et al. Near-infrared photodriven self-sustained oscillation of liquid-crystalline network film with predesignated polydopamine coating [J]. Advanced Materials, 2020, doi: 10.1002/adma.201906319.
[49] [49] QIAN X J, CHEN Q M, YANG Y, et al. Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots [J]. Advanced Materials, 2018, 30(29): 1801103.
QIAN X J, CHEN Q M, YANG Y, et al. Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots [J]. Advanced Materials, 2018, 30(29): 1801103.
[50] [50] TIAN H M, WANG Z J, CHEN Y L, et al. Polydopamine-coated main-chain liquid crystal elastomer as optically driven artificial muscle [J]. ACS Applied Materials & Interfaces, 2018, 10(9): 8307-8316.
TIAN H M, WANG Z J, CHEN Y L, et al. Polydopamine-coated main-chain liquid crystal elastomer as optically driven artificial muscle [J]. ACS Applied Materials & Interfaces, 2018, 10(9): 8307-8316.
[51] [51] LI Z, YANG Y, WANG Z H, et al. Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures [J]. Journal of Materials Chemistry A, 2017, 5(14): 6740-6746.
LI Z, YANG Y, WANG Z H, et al. Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures [J]. Journal of Materials Chemistry A, 2017, 5(14): 6740-6746.
[52] [52] WANG M L, SUN Y N, GUO J Y, et al. Amplification effect of CdS quantum dots on electrogenerated chemiluminescence of and its application in determination of catechol [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 780-786. (in Chinese)
WANG M L, SUN Y N, GUO J Y, et al. Amplification effect of CdS quantum dots on electrogenerated chemiluminescence of and its application in determination of catechol [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 780-786. (in Chinese)
[53] [53] JIANG Z, XU M, LI F Y, et al. Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation [J]. Journal of the American Chemical Society, 2013, 135(44): 16446-16453.
JIANG Z, XU M, LI F Y, et al. Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation [J]. Journal of the American Chemical Society, 2013, 135(44): 16446-16453.
[54] [54] WU W, YAO L M, YANG T S, et al. NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors [J]. Journal of the American Chemical Society, 2011, 133(40): 15810-15813.
WU W, YAO L M, YANG T S, et al. NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors [J]. Journal of the American Chemical Society, 2011, 133(40): 15810-15813.
Get Citation
Copy Citation Text
YANG Meng-yuan, YANG Xiao, FENG Wei, WANG Ling. Near-infrared light-responsive intelligent liquid crystal nanocomposites[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 631
Category:
Received: Mar. 24, 2020
Accepted: --
Published Online: Oct. 27, 2020
The Author Email: YANG Meng-yuan (my13663857103@163.com)