Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0615007(2025)

Lightweight Model for Irregular Wear Detection in Power Operations

Guangle Wang*, Yatong Zhou, and Zhao Wang
Author Affiliations
  • School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China
  • show less
    Figures & Tables(11)
    YOLO-WWS structure diagram
    YOLOv8n detection head
    Structure of SCTADH
    bottleneck and DStar structures. (a) bottleneck structure;(b) DStar structure
    MLFCA attention module
    Model parameter quantity distribution before and after improvement. (a) YOLOv8n parameter quantity distribution; (b) YOLO-WWSP parameter quantity distribution
    Comparison of YOLOv8n (left) and YOLO-WWSP (right) test results
    • Table 1. Experimental model parameters

      View table

      Table 1. Experimental model parameters

      Training parameterValue
      Learning rate0.01
      Batch size32
      Epochs200
      Image size640×640
      Momentum0.937
      Weight decay0.0005
    • Table 2. Results of the ablation experiments

      View table

      Table 2. Results of the ablation experiments

      ModelSCTADHDStarMLFCALAMPmAP@0.5 /%mAP@0.5∶0.95 /%ParamsFLOPs /109Model size /MB
      191.174.331519048.75.95
      291.376.122452358.74.48
      391.575.328491527.85.38
      491.075.921246598.14.26
      592.576.221259958.14.28
      691.875.89534025.32.05
    • Table 3. Comparison of the five attention mechanisms

      View table

      Table 3. Comparison of the five attention mechanisms

      ModelmAP@0.5 /%mAP@0.5∶0.95 /%
      491.075.9
      +CBAM92.475.9
      +ELA92.176.1
      +EMA92.275.3
      +LSKA91.775.9
      +MLFCA92.576.2
    • Table 4. Comparison of the experimental results

      View table

      Table 4. Comparison of the experimental results

      ModelmAP@0.5 /%mAP@0.5∶0.95 /%ParamsFLOPs /109Model size /MB
      RTDETR-L87.072.328607660101.056.33
      YOLOv3n88.970.31216878419.023.25
      YOLOv5n89.773.426492007.75.02
      YOLOv6n91.475.2449539213.08.28
      YOLOv8n91.174.331519048.75.95
      YOLOv10n91.172.922992646.75.50
      NanoDet-m88.467.99108001.33.78
      NanoDet-m-1.5×89.069.420106402.78.05
      NanoDet-plus-m-1.5×89.770.324044963.429.99
      NanoDet-g84.662.437531844.914.99
      PicoDet-xs83.957.26895621.32.67
      PicoDet-s84.760.511761841.94.53
      PicoDet-m87.263.534612165.113.25
      YOLO-WWSP91.875.89534025.32.05
    Tools

    Get Citation

    Copy Citation Text

    Guangle Wang, Yatong Zhou, Zhao Wang. Lightweight Model for Irregular Wear Detection in Power Operations[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0615007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 1, 2024

    Accepted: Aug. 28, 2024

    Published Online: Mar. 13, 2025

    The Author Email:

    DOI:10.3788/LOP241782

    Topics