Opto-Electronic Engineering, Volume. 52, Issue 1, 240264(2025)
Smartphone image quality assessment method based on Swin-AK Transformer
[1] Yan J B, Fang Y M, Liu X L. The review of distortion-related image quality assessment[J]. J Image Graphics, 27, 1430-1466(2022).
[3] Varga D. No-reference image quality assessment using the statistics of global and local image features[J]. Electronics, 12, 1615(2023).
[5] Shao X, Liu M Q, Li Z H et al. CPDINet: blind image quality assessment via a content perception and distortion inference network[J]. IET Image Processing, 16, 1973-1987(2022).
[12] Wang B, Bai Y Q, Zhu Z J et al. No-reference light field image quality assessment based on joint spatial-angular information[J]. Opto-Electron Eng, 51, 240139(2024).
[14] Liu J, Tang J L, Lin B et al. Rust spot image recognition of coatings based on HSV and shape feature[J]. China Surf Eng, 36, 217-228(2023).
[15] Liu Q G, Liu P, Wang Y H et al. Semi-parametric decolorization with Laplacian-based perceptual quality metric[J]. IEEE Trans Circuits Syst Video Technol, 27, 1856-1868(2017).
[16] Ma C H, Hu W H, Zhong H C et al. SAR image structure optimization method using Sobel operator fusion[J]. J Detect Control, 46, 119-124(2024).
[17] Luo X Y, Hu Z, Tang W C et al. Species identification of ore particles combined with Fourier and LBP descriptors[J]. Transducer Microsyst Technol, 42, 147-150(2023).
[19] Wang G P, Li X, Jia X F et al. STransMNet: a stereo matching method with Swin Transformer fusion[J]. Opto-Electron Eng, 50, 220246(2023).
[20] Ghadiyaram D, Bovik A C. Massive online crowdsourced study of subjective and objective picture quality[J]. IEEE Trans Image Process, 25, 372-387(2016).
[21] Saad M A, Bovik A C, Charrier C. Blind image quality assessment: a natural scene statistics approach in the DCT domain[J]. IEEE Trans Image Process, 21, 3339-3352(2012).
[22] Moorthy A K, Bovik A C. Blind image quality assessment: from natural scene statistics to perceptual quality[J]. IEEE Trans Image Process, 20, 3350-3364(2011).
[23] Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain[J]. IEEE Trans Image Process, 21, 4695-4708(2012).
[25] Zhang L, Zhang L, Bovik A C. A feature-enriched completely blind image quality evaluator[J]. IEEE Trans Image Process, 24, 2579-2591(2015).
[26] Xu J T, Ye P, Li Q H et al. Blind image quality assessment based on high order statistics aggregation[J]. IEEE Trans Image Process, 25, 4444-4457(2016).
[27] Bosse S, Maniry D, Müller K R et al. Deep neural networks for no-reference and full-reference image quality assessment[J]. IEEE Trans Image Process, 27, 206-219(2018).
[28] Yan Q S, Gong D, Zhang Y N. Two-stream convolutional networks for blind image quality assessment[J]. IEEE Trans Image Process, 28, 2200-2211(2019).
[30] Zhang W X, Ma K D, Yan J et al. Blind image quality assessment using a deep bilinear convolutional neural network[J]. IEEE Trans Circuits Syst Video Technol, 30, 36-47(2020).
[32] Wu J J, Ma J P, Liang F H et al. End-to-end blind image quality prediction with cascaded deep neural network[J]. IEEE Trans Image Process, 29, 7414-7426(2020).
[33] Pan Z Q, Zhang H, Lei J J et al. DACNN: Blind image quality assessment via a distortion-aware convolutional neural network[J]. IEEE Trans Circuits Syst Video Technol, 32, 7518-7531(2022).
Get Citation
Copy Citation Text
Guopeng Hou, Wu Dong, Likun Lu, Ziyi Zhou, Qian Ma, Zhen Bai, Shenghui Zheng. Smartphone image quality assessment method based on Swin-AK Transformer[J]. Opto-Electronic Engineering, 2025, 52(1): 240264
Category: Article
Received: Nov. 11, 2024
Accepted: Dec. 23, 2024
Published Online: Feb. 21, 2025
The Author Email: Wu Dong (董武)