Laser & Optoelectronics Progress, Volume. 61, Issue 11, 1116009(2024)

Research Progress on Electric Field Sensors Based on the Lithium Niobate Electro-Optic Effect (Invited)

Shiyao Deng1, Jiahao Peng1, Libo Wang2, Runhao Liu2, Fangheng Fu1, Huajiang Chen1, Yuming Wei1, Tiefeng Yang2, Heyuan Guan2、*, and Huihui Lu1、**
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, Guangdong, China
  • 2Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, Guangdong, China
  • show less
    Figures & Tables(8)
    Rydberg atomic energy level and EIT-AT effect[31]
    Schematic diagram of lithium niobate in different tangential directions. (a) y-cut lithium niobate crystal; (b) z-cut lithium niobate crystal; (c) x-cut lithium niobate crystal
    Schematic diagram of structure of an asymmetric Mach-Zehnder interferometer
    Schematic diagram of resonance peak drift
    Structural diagram of lithium niobate bulk crystal electric field sensor. (a) Structural diagram of antenna array electric field sensor[57]; (b) structural diagram of two-dimensional optical electric field sensor[58]; (c) structural diagram of push-pull optical electric field sensor[59]; (d) structural diagram of asymmetric MZI electric field sensor with two arms with different widths[62]
    Structural diagram of thin film lithium niobate electric field sensor. (a) Structural diagram of gap Bragg grating[70]; (b) optical fiber end connected to photons crystal plate structure diagram and photonic crystal shape[72]; (c) structural diagram of all-dielectric two-dimensional electric field sensor[75]; (d) structural diagram of LF optical electric field sensor[78]
    • Table 1. Performance comparison of different electric field sensors of lithium niobate bulk crystal type

      View table

      Table 1. Performance comparison of different electric field sensors of lithium niobate bulk crystal type

      ReferenceYearSensitivityLinear dynamic rangeFrequency response rangeSize
      4620060.055.60 kV/cm20.0 mm×7.8 mm×1.0 mm 
      4720090.12 mV/Hz1/2
      4820092.22 mV/m50.0 MHz2.2 GHz
      4920112090 kVzz/mTo 1 MHz
      50201114 V/mm
      5120120.4 V/m0.4018.48 V/m10 kHz18 GHz85 mm ×15 mm ×15 mm 
      112015±801 kV/mm10 Hz10 MHz65 mm ×15 mm ×15 mm 
      552017427.2 V/m2.256.8 kV/m100 kHz1 GHz10 cm ×10 cm ×10 cm 
      56201943.1 mV/m100 kHz1 GHz85 mm ×15 mm ×10 mm 
      56201957.9 mV/m100 kHz1 GHz< 85 mm ×15 mm ×10 mm 
      572020245 mV/m-14.0320.97 dBV/m100.0 kHz26.5 GHz55 mm ×15 mm ×15 mm 
      5820205 kV/m100 kHz1 GHz78 mm ×15 mm ×10 mm 
      59202112.5 V/m47 dB9 kHz340 MHz80 mm ×15 mm ×8 mm 
      6020211.29 kV/m1.29100.97 kV/m78 mm ×18 mm ×7.5 mm 
      61202210.5 kV/m87 mm ×20 mm ×20 mm 
      62202310 V/m±25 kV/m65 mm ×12 mm ×5 mm 
      63202316 mV/(m·Hz1/2)100 kHz1 GHz65 mm ×12 mm ×10 mm 
      6420232.22 nm/E(V/μm)01010 kV/m
    • Table 2. Performance comparison of different electric field sensors based on thin film lithium niobate

      View table

      Table 2. Performance comparison of different electric field sensors based on thin film lithium niobate

      ReferenceYearSensitivityLinear dynamic rangeFrequency response rangeSize
      682012170 mV/(m·Hz1/2)1 Hz100 kHz10 μm×10 μm
      6920124.5 V/(m·Hz1/2)20 μm×20 μm
      41201650 μV/m13.0 μm×13.0 μm×0.7 μm
      70201723 mV/m0.5 μm×0.7 μm×6 μm
      7120180.5 V/m90 dB200 MHz3 GHz1.8 mm×2.8 mm
      72201932 V/(m·Hz1/2)>100 dB19 μm×19 μm
      73202025 μV/m
      74202280 mV/(m·Hz1/2)3 mm×3 mm
      7520228.34 mV/(m·Hz1/2)4100 MHz4.0 mm×3.8 mm
      7620228.8 mV/(m·Hz1/2)40 mV/m28.6 kV/m0.126.5 GHz
      7720232 mV/(m·Hz1/2)
      7820231 mV/m1.000 mV/m5.012 kV/m1 MHz20 GHz20 mm×5 mm×5 mm
      79202310 MHz3 GHz9.5 mm3
      80202318.9 mV
      812023-1.51.5 kV/m
    Tools

    Get Citation

    Copy Citation Text

    Shiyao Deng, Jiahao Peng, Libo Wang, Runhao Liu, Fangheng Fu, Huajiang Chen, Yuming Wei, Tiefeng Yang, Heyuan Guan, Huihui Lu. Research Progress on Electric Field Sensors Based on the Lithium Niobate Electro-Optic Effect (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(11): 1116009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Dec. 7, 2023

    Accepted: Jan. 12, 2024

    Published Online: Jun. 10, 2024

    The Author Email: Heyuan Guan (thuihuilu@jnu.edu.cn), Huihui Lu (guanheyuan@jnu.edu.cn)

    DOI:10.3788/LOP232630

    CSTR:32186.14.LOP232630

    Topics