Laser & Optoelectronics Progress, Volume. 61, Issue 10, 1028002(2024)

Remote Sensing Image Semantic Segmentation Algorithm Based on TransMANet

Xirui Song1,2 and Hongwei Ge1,2、*
Author Affiliations
  • 1School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, Jiangsu , China
  • 2Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, Jiangnan University, Wuxi 214122, Jiangsu , China
  • show less
    Figures & Tables(20)
    Schematic of MANet. (a) Architecture of MANet; (b) attention block; (c) decoder block
    Two consecutive Swin Transformer blocks
    Architecture of PAM
    Architecture of AEM
    Architecture of the dual-branch decoder
    Schematic of local attention module. (a) Feature pyramid channel; (b) architecture of local attention module
    Cross-shaped attention
    Schematic of TransMANet. (a) Architecture of TransMANet; (b) fuse block
    Dataset presentation. (a) UAVid dataset; (b) LoveDA dataset; (c) Vaihingen dataset; (d) Potsdam dataset
    Visualization results on the UAVid test set. (a) Original image; (b) MANet; (c) TransMANet
    Visualization results on the LoveDA test set. (a) Original image; (b) MANet; (c) TransMANet
    • Table 1. Performance comparison of different methods on UAVid dataset

      View table

      Table 1. Performance comparison of different methods on UAVid dataset

      ModelIoU/%mIoU /%
      BackgroundBuildingRoadTreeVegetationStatic carMoving carHuman
      Segmenter2664.284.479.876.157.634.559.214.258.7
      SwiftNet2464.185.361.578.376.462.151.115.761.1
      ABCNet2567.486.481.279.963.148.469.813.963.8
      SegFormer2766.686.380.179.662.352.572.528.566.0
      MANet1767.488.079.579.463.064.667.421.766.3
      UNetFormer1668.487.481.580.263.556.473.631.067.8
      TransMANet69.988.781.880.763.667.773.933.269.9
    • Table 2. Performance comparison of different methods on LoveDA dataset

      View table

      Table 2. Performance comparison of different methods on LoveDA dataset

      ModelIoU /%mIoU /%
      BackgroundBuildingRoadWaterBarrenForestAgriculture
      TransUNet2343.056.153.778.09.344.956.948.9
      Segmenter2638.050.748.777.413.343.558.247.1
      SwinUperNet2043.354.354.378.714.945.359.650.0
      DC-Swin2841.354.556.278.114.547.262.450.6
      MANet1746.557.553.279.318.347.067.252.7
      UNetFormer1644.758.854.979.620.146.062.552.4
      TransMANet46.259.760.982.319.749.965.354.8
    • Table 3. Performance comparison of different methods on Vaihingen dataset

      View table

      Table 3. Performance comparison of different methods on Vaihingen dataset

      ModelF1/%Mean F1 /%OA /%mIoU /%
      Impervious surfaceBuildingLow vegetationTreeCar
      LANet2192.494.982.988.981.388.189.8
      DeepLabV3+991.694.182.588.077.786.789.177.1
      SwiftNet2492.294.884.189.381.288.390.279.6
      ABCNet2592.795.284.589.785.389.590.781.3
      MANet1793.095.484.690.088.990.491.082.7
      UNetFormer1692.795.384.990.688.590.491.082.7
      TransMANet93.495.985.690.791.091.391.584.9
    • Table 4. Performance comparison of different methods on Potsdam dataset

      View table

      Table 4. Performance comparison of different methods on Potsdam dataset

      ModelF1 /%Mean F1 /%OA /%mIoU /%
      Impervious surfaceBuildingLow vegetationTreeCar
      LANet2193.197.287.388.094.292.090.8
      DeepLabV3+992.195.385.686.594.890.989.284.2
      SwiftNet2491.895.985.786.894.591.089.383.8
      ABCNet2593.596.987.989.195.892.791.386.5
      MANet1793.497.088.389.496.592.991.387.0
      UNetFormer1693.697.287.788.996.592.891.386.8
      TransMANet93.796.988.389.696.993.191.787.3
    • Table 5. Comparison of parameter number and calculation amount

      View table

      Table 5. Comparison of parameter number and calculation amount

      ModelParameters /106FLOPs /109
      Segmenter266.726.8
      SwiftNet2411.851.6
      ABCNet2514.062.9
      SegFormer2713.763.3
      MANet1735.9311.6
      UNetFormer1611.746.9
      TransUNet2390.7803.4
      SwinUperNet2060.0349.1
      DC-Swin2845.6183.8
      LANat2123.822.0
      DeepLabV3+939.730.7
      TransMANet27.2112.5
    • Table 6. Ablation study on LoveDA dataset

      View table

      Table 6. Ablation study on LoveDA dataset

      ModelIoU /%mIoU /%
      BackgroundBuildingRoadWaterBarrenForestAgriculture
      Base46.557.653.279.318.347.067.252.7
      Base+①45.757.654.880.016.547.465.852.5
      Base+②46.460.256.480.718.448.963.553.5
      Base+③45.558.957.480.218.748.166.553.6
      Base+①②③46.259.760.982.319.749.965.354.8
    • Table 7. Ablation study on UAVid dataset

      View table

      Table 7. Ablation study on UAVid dataset

      ModelIoU /%mIoU /%OA /%
      BackgroundBuildingRoadTreeVegetationStatic carMoving carHuman
      Base67.487.779.579.463.064.667.421.766.386.1
      Base+①68.888.281.580.264.364.169.732.868.786.9
      Base+②69.689.181.380.763.863.468.724.767.687.3
      Base+③68.689.080.880.263.459.163.023.966.086.8
      Base+①②③69.988.781.780.763.667.773.933.269.987.4
    • Table 8. Ablation study on Vaihingen dataset

      View table

      Table 8. Ablation study on Vaihingen dataset

      ModelF1 /%Mean F1 /%OA /%mIoU /%
      Impervious surfaceBuildingLow vegetationTreeCar
      Base93.095.484.690.088.990.491.082.7
      Base+①93.095.885.890.786.990.591.482.8
      Base+②93.496.085.790.789.191.091.683.6
      Base+③93.296.085.590.788.790.891.583.4
      Base+①②③93.495.985.690.791.091.391.584.9
    • Table 9. Ablation study on Potsdam dataset

      View table

      Table 9. Ablation study on Potsdam dataset

      ModelF1 /%Mean F1 /%OA /%mIoU /%
      Impervious surfaceBuildingLow vegetationTreeCar
      Base93.497.088.389.496.592.991.387.0
      Base+①93.196.788.389.696.592.991.386.9
      Base+②93.597.288.089.796.493.091.687.1
      Base+③93.697.088.289.596.392.991.687.0
      Base+①②③93.796.988.389.696.993.191.787.3
    Tools

    Get Citation

    Copy Citation Text

    Xirui Song, Hongwei Ge. Remote Sensing Image Semantic Segmentation Algorithm Based on TransMANet[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1028002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Sep. 5, 2023

    Accepted: Oct. 13, 2023

    Published Online: Apr. 29, 2024

    The Author Email: Hongwei Ge (ghw8601@163.com)

    DOI:10.3788/LOP232052

    CSTR:32186.14.LOP232052

    Topics