Acta Optica Sinica, Volume. 42, Issue 18, 1828004(2022)

Multi-Scale Sea-Land Segmentation Method for Remote Sensing Images Based on Res2Net

Hui Gao, Xiaodong Yan, Heng Zhang*, Yiting Niu, and Jiaqi Wang
Author Affiliations
  • Institute of Geospatial Information, Strategic Support Force Information Engineering University, Zhengzhou 450001, Henan, China
  • show less
    Figures & Tables(11)
    Architecture of the proposed network
    Architectures of Res_Block and Res2_Block. (a) Res_Block; (b) Res2_Block (s=4)
    Architectures of attention module. (a) Architecture of SE module; (b) architecture of SA module
    Comparison of experimental results of various networks on Data1. (a) Original image; (b) original label; (c) U-Net; (d) Deeplabv3+; (e) U2-Net; (f) RAUNet; (g) MSRNet;(h) water line superposition result
    Comparison of experimental results of various networks on Data2. (a) Original image; (b) original label; (c) U-Net; (d) Deeplabv3+; (e) U2-Net; (f) RAUNet; (g) MSRNet; (h) water line superposition result
    Ablation experimental results on Data1. (a) En_Decoder+ResNet; (b) En_Decoder+Res2Net; (c) En_Decoder+Res2Net+DS; (d) MSRNet
    • Table 1. Input and output parameters of encoder layer

      View table

      Table 1. Input and output parameters of encoder layer

      Encoder layerInputConvolution typeKernel sizeStrideOutput
      Encoder_1

      512×512×3

      256×256×64

      Conv

      maxpooling

      7×7

      3×3

      2

      2

      256×256×64

      128×128×256

      Encoder_2128×128×2563×Res2_Block3×31128×128×256
      Encoder_3128×128×2564×Res2_Block3×3264×64×512
      Encoder_464×64×5126×Res2_Block3×3232×32×1 024
      Encoder_532×32×1 0243×Res2_Block3×3216×16×2 048
    • Table 2. Input and output parameters of decoder layer

      View table

      Table 2. Input and output parameters of decoder layer

      LayerInputConvolution typeOutputSide-output
      Concat512×512×10Conv512×512×2
      Decoder_5

      16×16×2 048

      16×16×1 024

      SA_5

      Res2_Block+Conv+upsample

      16×16×1 024

      32×32×1 024

      512×512×2
      Decoder_4

      32×32×1 024

      32×32×512

      SA_4

      Res2_Block+Conv+upsample

      32×32×512

      64×64×512

      512×512×2
      Decoder_3

      64×64×512

      64×64×256

      SA_3

      Res2_Block+Conv+upsample

      64×64×256

      128×128×256

      512×512×2
      Decoder_2

      128×128×256

      128×128×64

      SA_2

      Res2_Block+Conv+upsample

      128×128×64

      256×256×64

      512×512×2
      Decoder_1

      256×256×64

      256×256×32

      SA_1

      Res2_Block+Conv+upsample

      256×256×32

      512×512×2

      512×512×2
    • Table 3. Details of two datasets

      View table

      Table 3. Details of two datasets

      ParameterData1Data2
      Image sourceGaofen-1Landsat-8
      BandsRed,green,blue,near-infraredRed,green,blue
      Spatial resolution /m830
      Image size256×256512×512
      Number of training samples15441950
      Number of validation samples1781411
      Number of test samples192-
    • Table 4. Segmentation results of each method

      View table

      Table 4. Segmentation results of each method

      MethodData1Data2
      F1-score /%MIOU /%MAEF1-score-b /%F1-score /%MIOU /%MAEF1-score-b /%
      U-Net97.9295.920.02151.9098.1396.330.97952.84
      Deeplabv3+98.2396.530.01848.1198.5397.100.70955.48
      U2-Net97.9295.920.02360.6898.3096.650.76252.05
      RAUNet98.3896.820.01669.2598.3996.840.69449.77
      MSRNet99.0998.190.00980.1498.9597.930.50772.86
    • Table 5. MSRNet ablation experiments

      View table

      Table 5. MSRNet ablation experiments

      Architecture of networkF1-score-b /%
      En_Decoder+ResNet63.63
      En_Decoder+Res2Net74.08
      En_Decoder+Res2Net+DS75.11
      En_Decoder+Res2Net+DS+SA(MSRNet)80.14
    Tools

    Get Citation

    Copy Citation Text

    Hui Gao, Xiaodong Yan, Heng Zhang, Yiting Niu, Jiaqi Wang. Multi-Scale Sea-Land Segmentation Method for Remote Sensing Images Based on Res2Net[J]. Acta Optica Sinica, 2022, 42(18): 1828004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 24, 2022

    Accepted: Mar. 11, 2022

    Published Online: Sep. 15, 2022

    The Author Email: Zhang Heng (13783651715@163.com)

    DOI:10.3788/AOS202242.1828004

    Topics