Acta Optica Sinica, Volume. 42, Issue 18, 1828004(2022)
Multi-Scale Sea-Land Segmentation Method for Remote Sensing Images Based on Res2Net
Fig. 2. Architectures of Res_Block and Res2_Block. (a) Res_Block; (b) Res2_Block (s=4)
Fig. 3. Architectures of attention module. (a) Architecture of SE module; (b) architecture of SA module
Fig. 4. Comparison of experimental results of various networks on Data1. (a) Original image; (b) original label; (c) U-Net; (d) Deeplabv3+; (e) U2-Net; (f) RAUNet; (g) MSRNet;(h) water line superposition result
Fig. 5. Comparison of experimental results of various networks on Data2. (a) Original image; (b) original label; (c) U-Net; (d) Deeplabv3+; (e) U2-Net; (f) RAUNet; (g) MSRNet; (h) water line superposition result
Fig. 6. Ablation experimental results on Data1. (a) En_Decoder+ResNet; (b) En_Decoder+Res2Net; (c) En_Decoder+Res2Net+DS; (d) MSRNet
|
|
|
|
|
Get Citation
Copy Citation Text
Hui Gao, Xiaodong Yan, Heng Zhang, Yiting Niu, Jiaqi Wang. Multi-Scale Sea-Land Segmentation Method for Remote Sensing Images Based on Res2Net[J]. Acta Optica Sinica, 2022, 42(18): 1828004
Category: Remote Sensing and Sensors
Received: Jan. 24, 2022
Accepted: Mar. 11, 2022
Published Online: Sep. 15, 2022
The Author Email: Zhang Heng (13783651715@163.com)