Laser & Optoelectronics Progress, Volume. 61, Issue 24, 2428005(2024)

Typhoon Class Prediction Method Based on Physical Constraints and Cloud Map Generation

Zongsheng Zheng1, Wenhuan Zhou1、*, Zhenghan Wang1, Meng Gao1, Zhijun Huo1, and Yuewei Zhang2
Author Affiliations
  • 1Shanghai Ocean University, School of Information Technology, Shanghai 201306, China
  • 2Guangzhou Meteorological Satellite Ground Station, Guangzhou 510640, Guangdong , China
  • show less
    References(20)

    [1] Zheng Z S, Hu C Y, Huang D M et al. Research on transfer learning methods for classification of typhoon cloud image[J]. Remote Sensing Technology and Application, 35, 202-210(2020).

    [3] Shi X J, Chen Z R, Wang H et al. Convolutional LSTM Network: a machine learning approach for precipitation nowcasting[C], 802-810(2015).

    [4] Shi X J, Gao Z H, Lausen L et al. Deep learning for precipitation nowcasting: a benchmark and a new model[C], 5622-5632(2017).

    [13] Wu J J, Lu E, Kohli P et al. Learning to see physics via visual de-animation[C], 152-163(2017).

    [15] Wang K F, Gou C, Duan Y J et al. Generative adversarial networks: the state of the art and beyond[J]. Acta Automatica Sinica, 43, 321-332(2017).

    [18] Ke S T, Chen M H, Zheng Z X et al. Super-resolution reconstruction of optical coherence tomography retinal images by generating adversarial network[J]. Chinese Journal of Lasers, 49, 1507203(2022).

    Tools

    Get Citation

    Copy Citation Text

    Zongsheng Zheng, Wenhuan Zhou, Zhenghan Wang, Meng Gao, Zhijun Huo, Yuewei Zhang. Typhoon Class Prediction Method Based on Physical Constraints and Cloud Map Generation[J]. Laser & Optoelectronics Progress, 2024, 61(24): 2428005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 12, 2024

    Accepted: Apr. 26, 2024

    Published Online: Dec. 13, 2024

    The Author Email: Wenhuan Zhou (1910792427@qq.com)

    DOI:10.3788/LOP240513

    CSTR:32186.14.LOP240513

    Topics