Laser & Optoelectronics Progress, Volume. 62, Issue 2, 0237005(2025)

Roadside Object Detection Algorithm Based on Multiscale Sequence Fusion

Ruoying Liu1,2,3、*, Miaohua Huang1,2,3, Liangzi Wang1,2,3, Yongkang Hu1,2,3, and Ye Tao1,2,3
Author Affiliations
  • 1Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, Hubei , China
  • 2Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, Hubei , China
  • 3Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, Hubei , China
  • show less
    Figures & Tables(12)
    Architecture diagram of MQ-YOLO algorithm
    Architecture diagram of D_C2f module
    Architecture diagram of triple feature encoder module and scale sequence feature fusion module
    Architecture diagram of DyDetect module
    Visualization results of DAIR-V2X-I dataset. (a) Category and quantity of labels; (b) distribution of center position of detection target; (c) distribution of width and height of label
    Object detection results of DAIR-V2X-I dataset. (a) Dense occlusion scene; (b) small target scene; (c) night scene
    Object detection results of the DAIR-V2X-SPD-I dataset. (a) Dense occlusion scene; (b) small target scene; (c) rainy scene
    Roadside object detection system. (a) System deployment location; (b) system architecture; (c) visual interface
    Experimental results of roadside object detection system. (a) Sunny scene; (b) rainy scene; (c) night scene
    • Table 1. Ablation experiments on DAIR-V2X-I dataset

      View table

      Table 1. Ablation experiments on DAIR-V2X-I dataset

      MethodTypeParameter /MGFLOPsmAP@50 /%mAP@(50‒95) /%FPS /(frame/s)
      1YOLOv83.008.1086.764.6150.8
      2YOLOv8+D-C2f3.008.1086.864.8157.7
      3YOLOv8+PSF2.8617.0088.967.1121.3
      4YOLOv8+DyDetect3.6210.4088.066.994.7
      5YOLOv8+NWD3.018.2087.064.7142.2
      6YOLOv8+D-C2f+PSF3.4815.3088.867.3110.2
      7YOLOv8+D-C2f+PSF+DyDetect3.1719.4090.570.369.6
      8

      YOLOv8+

      D-C2f+PSF+DyDetect+NWD

      3.9622.2090.670.669.2
    • Table 2. Comparison of detection results of different algorithms on DAIR-V2X-I dataset

      View table

      Table 2. Comparison of detection results of different algorithms on DAIR-V2X-I dataset

      MethodParameter /MGFLOPsmAP@50 /%mAP@(50‒95) /%FPS/(frame/s)
      SSD26.3062.7068.839.634.4
      YOLOXs54.20156.0082.349.8101.0
      YOLOv5n2.517.1086.264.0139.2
      YOLOv5s9.1123.8089.468.7133.3
      YOLOv7-Tiny6.0213.2087.760.5117.6
      YOLOv8n3.008.1086.764.6150.8
      YOLOv8s11.1328.4089.369.2146.2
      YOLOv9-Tiny4.2518.6088.267.341.1
      MQ-YOLO3.9622.2090.670.669.2
    • Table 3. Comparison of detection results of different algorithms on DAIR-V2X-SPD-I dataset

      View table

      Table 3. Comparison of detection results of different algorithms on DAIR-V2X-SPD-I dataset

      MethodmAP@50 /%Mean value /%
      CarPedestrianCyclistBusVanTruck
      YOLOv8n97.477.891.799.498.298.593.8
      MQ-YOLO98.792.795.899.499.199.497.5
    Tools

    Get Citation

    Copy Citation Text

    Ruoying Liu, Miaohua Huang, Liangzi Wang, Yongkang Hu, Ye Tao. Roadside Object Detection Algorithm Based on Multiscale Sequence Fusion[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0237005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Apr. 28, 2024

    Accepted: May. 20, 2024

    Published Online: Jan. 7, 2025

    The Author Email:

    DOI:10.3788/LOP241187

    CSTR:32186.14.LOP241187

    Topics