Journal of Inorganic Materials, Volume. 38, Issue 10, 1149(2023)
[2] LI Z X, GENG X Y, WANG J et al. Emerging artificial neuron devices for probabilistic computing[J]. Frontiers in Neuroscience, 15: 717947(2021).
[9] WANG Z, ZENG T, REN Y et al. Toward a generalized Bienenstock- Cooper-Munro rule for spatiotemporal learning
[12] CHUA L. Resistance switching memories are memristors[J]. Applied Physics A-Materials Science&Processing, 102: 765(2011).
[13] STRUKOV D B, SNIDER G S, STEWART D R et al. The missing memristor found[J]. Nature, 453: 80(2008).
[14] PI S, LI C, JIANG H et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension[J]. Nature Nanotechnology, 14: 35(2019).
[16] WILLIAMS R S, What’s next[J]. Computing in Science& Engineering, 7(2017).
[20] WANG Y, GONG Y, HUANG S et al. Memristor-based biomimetic compound eye for real-time collision detection[J]. Nature Communications, 12: 5979(2021).
[21] PARK S-O, JEONG H, PARK J et al. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing[J]. Nature Communications, 13: 2888(2022).
[22] LIU Z, TANG J, GAO B et al. Neural signal analysis with memristor arrays towards high-efficiency brain-machine interfaces[J]. Nature Communications, 11: 4234(2020).
[23] HAMDIOUI S, XIE L, NGUYEN H A D et al[conf-proc].
[24] PREZIOSO M, MERRIKH-BAYAT F, HOSKINS B D et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors[J]. Nature, 521: 61(2015).
[25] SHERIDAN P M, CAI F X, DU C et al. Sparse coding with memristor networks[J]. Nature Nanotechnology, 12: 784(2017).
[27] YAO P, WU H Q, GAO B et al. Face classification using electronic synapses[J]. Nature Communications, 8: 15199(2017).
[28] YAO P, WU H Q, GAO B et al. Fully hardware-implemented memristor convolution neural network[J]. Nature, 577: 641(2020).
[32] ZHUGE F, HU B, HE C et al. Mechanism of nonvolatile resistive switching in graphene oxide thin films[J]. Carbon, 49: 3796(2011).
[37] KWON D, KIM K, JANG J H et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory[J]. Nature Nanotechnology, 5: 148(2010).
[48] YAO J, ZHONG L, NATELSON D et al. Intrinsic resistive switching and memory effects in silicon oxide[J]. Applied Physics A-Materials Science&Processing, 102: 835(2011).
[55] CHEN X, ZHANG H, RUAN K et al. Annealing effect on the bipolar resistive switching behaviors of BiFeO3 thin films on LaNiO3-buffered Si substrates[J]. Journal of Alloys and Compounds, 529: 108(2012).
[57] YANG J J, STRUKOV D B, STEWART D R. Memristive devices for computing[J]. Nature Nanotechnology, 8: 13(2013).
[59] YANG J J, PICKET M D, LI X et al. Memristive switching mechanism for metal/oxide/metal nanodevices[J]. Nature Nanotechnology, 3: 429(2008).
[61] YANG J J, STRACHAN J P, MIAO F et al. Metal/TiO2 interfaces for memristive switches[J]. Applied Physics A-Materials Science&Processing, 785(2011).
[69] WANG W, PREDRETTI G, MILO V et al. Computing of temporal information in spiking neural networks with ReRAM synapses[J]. Faraday Discussions, 213: 453(2019).
[72] PARK J, PARK E, KIM S et al. Nitrogen-induced enhancement of synaptic weight reliability in titanium oxide-based resistive artificial synapse and demonstration of the reliability effect on the neuromorphic system[J]. ACS Applied Materials&Interfaces, 32178(2019).
[77] LIU L, XIONG W, LIU Y et al. Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications[J]. Advanced Electronic Materials, 1901012(2020).
[78] LEE M-J, LEE C B, LEE D et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5
[82] HANSEN M, ZAHARI F, KOHLSTEDT H et al. Unsupervised Hebbian learning experimentally realized with analogue memristive crossbar arrays[J]. Scientific Reports, 8: 8914(2018).
[84] BANG S, KIM M H, KIM T H et al. Gradual switching and self-rectifying characteristics of Cu/
[87] SOKOLOV A S, JEON Y R, KIM S et al. Bio-realistic synaptic characteristics in the cone-shaped ZnO memristive device[J]. NPG Asia Materials, 11: 5(2019).
[89] SOKOLOV A S, JEON Y R, KU B et al. Ar ion plasma surface modification on the heterostructured TaO
[90] MAHATA C, LEE C, AN Y et al. Resistive switching and synaptic behaviors of an HfO2/Al2O3 stack on ITO for neuromorphic systems[J]. Journal of Alloys and Compounds, 826: 154434(2020).
[91] CHEN J Y, WU M C, TING Y H et al. Applications of p-n homojunction ZnO nanowires to one-diode one-memristor RRAM arrays[J]. Scripta Materialia, 187: 439(2020).
[94] ZHANG L, XU Z, HAN J et al. Resistive switching performance improvement of InGaZnO-based memory device by nitrogen plasma treatment[J]. Journal of Materials Science&Technology, 49: 1(2020).
[99] TAO Y, WANG Z, XU H et al. Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states[J]. Nano Energy, 71: 104628(2020).
[106] VALOV I, LINN E, TAPPERTZHOFEN S et al. Nanobatteries in redox-based resistive switches require extension of memristor theory[J]. Nature Communications, 4: 1771(2013).
[109] WEDIG A, LUEBBEN M, CHO D Y et al. Nanoscale cation motion in TaO
[110] JIANG H, HAN L, LIN P et al. Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor[J]. Scientific Reports, 6: 28525(2016).
[112] WANG Z, JOSHI S, SAVEL’EV S E et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing[J]. Nature Materials(2017).
[115] ALI A, ABBAS Y, ABBAS H et al. Dependence of InGaZnO and SnO2 thin film stacking sequence for the resistive switching characteristics of conductive bridge memory devices[J]. Applied Surface Science, 525: 146390(2020).
[116] CHANG C F, CHEN J Y, HUANG G M et al. Revealing conducting filament evolution in low power and high reliability Fe3O4/Ta2O5 bilayer RRAM[J]. Nano Energy, 53: 871(2018).
[117] HU Q, LI R, ZHANG X et al. Lithium ion trapping mechanism of SiO2 in LiCoO2 based memristors[J]. Scientific Reports, 9: 5081(2019).
[118] IOANNOU P S, KYRIAKIDES E, SCHNEEGANS O et al. Evidence of biorealistic synaptic behavior in diffusive Li-based two- terminal resistive switching devices[J]. Scientific Reports, 10: 8711(2020).
[126] YAN X, QIN C, LU C et al. Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing[J]. ACS Applied Materials&Interfaces, 48029(2019).
[130] KUZMICHEV D S, CHERNIKOVA A G, KOZODAEV M G et al. Resistance switching peculiarities in nonfilamentary self-rectified TiN/Ta2O5/Ta and TiN/HfO2/Ta2O5/Ta stacks[J]. Physics Status Solidi-Rapid Research Letters, 1900952(2020).
[131] XU Z, LI F, WU C et al. Ultrathin electronic synapse having high temporal/spatial uniformity and an Al2O3/graphene quantum dots/Al2O3 sandwich structure for neuromorphic computing[J]. NPG Asia Materials, 11: 18(2019).
[136] ZHOU F, ZHOU Z, CHEN J et al. Optoelectronic resistive random access memory for neuromorphic vision sensors[J]. Nature Nanotechnology, 14: 776(2019).
[138] HU D-C, YANG R, JIANG L et al. Memristive synapses with photoelectric plasticity realized in ZnO1-
[140] ZHU J, ZHANG T, YANG Y et al. A comprehensive review on emerging artificial neuromorphic devices[J]. Applied Physics Reviews, 7: 011312(2020).
Get Citation
Copy Citation Text
Xia ZHUGE, Renxiang ZHU, Jianmin WANG, Jingrui WANG, Fei ZHUGE.
Category:
Received: Feb. 9, 2023
Accepted: --
Published Online: Mar. 6, 2024
The Author Email: Fei ZHUGE (zhugefei@nimte.ac.cn)