Chinese Journal of Lasers, Volume. 51, Issue 7, 0701003(2024)

Research Progress of Isolated Attosecond Pulse Characterization

Jiacan Wang1,2, Fan Xiao1,2, Xiaowei Wang1,2、**, Li Wang1,2, Wenkai Tao1,2, Lingyi Zhao1,2, Xi ao Li1,2, and Zengxiu Zhao1,2、*
Author Affiliations
  • 1College of Science, National University of Defense Technology, Changsha 410073, Hunan , China
  • 2Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, Hunan , China
  • show less
    References(115)

    [1] Zewail A H[M]. Laser femtochemistry, 25-33(1994).

    [2] Ferray M, L'Huillier A, Li X F et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 21, L31-L35(1988).

    [3] McPherson A, Gibson G, Jara H et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases[J]. Journal of the Optical Society of America B, 4, 595-601(1987).

    [4] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 71, 1994-1997(1993).

    [5] Arpin P, Popmintchev T, Wagner N L et al. Enhanced high harmonic generation from multiply ionized argon above 500 eV through laser pulse self-compression[J]. Physical Review Letters, 103, 143901(2009).

    [6] Luu T T, Yin Z, Jain A et al. Extreme-ultraviolet high-harmonic generation in liquids[J]. Nature Communications, 9, 3723(2018).

    [7] Dai C, Wang Y, Miao Z M et al. Generation and application of high-order harmonics based on interaction between femtosecond laser and matter[J]. Laser & Optoelectronics Progress, 58, 0300001(2021).

    [8] Gao J X, Wu J Q, Lou Z Y et al. High-order harmonic generation in an X-ray range from laser-induced multivalent ions of noble gas[J]. Optica, 9, 1003-1008(2022).

    [9] Zhao X L, Bai L H, Bai Y et al. High-harmonic spectral shift of water under two-color laser fields[J]. Acta Optica Sinica, 43, 1326002(2023).

    [10] Yu S J, Liu Z Q, Liu Y F et al. Probing the structure of asymmetric planar molecules using odd-even high harmonics[J]. Laser & Optoelectronics Progress, 60, 0102002(2023).

    [11] Mondal A, Neufeld O, Yin Z et al. High-harmonic spectroscopy of low-energy electron-scattering dynamics in liquids[J]. Nature Physics, 19, 1813-1820(2023).

    [12] Mondal A, Waser B, Balciunas T et al. High-harmonic generation in liquids with few-cycle pulses: effect of laser-pulse duration on the cut-off energy[J]. Optics Express, 31, 34348-34361(2023).

    [13] Li S, Tang Y G, Ortmann L et al. High-order harmonic generation from a thin film crystal perturbed by a quasi-static terahertz field[J]. Nature Communications, 14, 2603(2023).

    [14] Tcherbakoff O, Mével E, Descamps D et al. Time-gated high-order harmonic generation[J]. Physical Review A, 68, 043804(2003).

    [15] Sola I J, Mével E, Elouga L et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating[J]. Nature Physics, 2, 319-322(2006).

    [16] Mashiko H, Gilbertson S, Li C Q et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers[J]. Physical Review Letters, 100, 103906(2008).

    [17] Gilbertson S, Mashiko H, Li C Q et al. A low-loss, robust setup for double optical gating of high harmonic generation[J]. Applied Physics Letters, 92, 071109(2008).

    [18] Calegari F, Lucchini M, Negro M et al. Temporal gating methods for the generation of isolated attosecond pulses[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 45, 074002(2012).

    [19] Timmers H, Sabbar M, Kobayashi Y et al. Polarization assisted amplitude gating as a route to tunable, high-contrast single attosecond pulses[J]. Optica, 3, 707-710(2016).

    [20] Paul P M, Toma E S, Breger P et al. Observation of a train of attosecond pulses from high harmonic generation[J]. Science, 292, 1689-1692(2001).

    [21] Hentschel M, Kienberger R, Spielmann C et al. Attosecond metrology[J]. Nature, 414, 509-513(2001).

    [22] Wang J C, Xiao F, Wang L et al. Fast phase retrieval for broadband attosecond pulse characterization[J]. Optics Express, 31, 43224-43233(2023).

    [23] Zhong S Y, Teng H, Zhu X X et al. Characterizing 86-attosecond isolated pulses based on amplitude gating of high harmonic generation[J]. Chinese Optics Letters, 21, 113201(2023).

    [24] Kienberger R, Goulielmakis E, Uiberacker M et al. Atomic transient recorder[J]. Nature, 427, 817-821(2004).

    [25] Wang X L, Xu P, Li J et al. Isolated attosecond pulse with 159 as duration measured by home built attosecond streaking camera[J]. Chinese Journal of Lasers, 47, 0415002(2020).

    [26] Wang X W, Wang L, Xiao F et al. Generation of 88 as isolated attosecond pulses with double optical gating[J]. Chinese Physics Letters, 37, 023201(2020).

    [27] Gaumnitz T, Jain A, Pertot Y et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 25, 27506-27518(2017).

    [28] Li J, Ren X M, Yin Y C et al. 53-attosecond X-ray pulses reach the carbon K-edge[J]. Nature Communications, 8, 186(2017).

    [29] Zhan M J, Ye P, Teng H et al. Generation and measurement of isolated 160-attosecond XUV laser pulses at 82 eV[J]. Chinese Physics Letters, 30, 093201(2013).

    [30] Zhao K, Zhang Q, Chini M et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch[J]. Optics Letters, 37, 3891-3893(2012).

    [31] Goulielmakis E, Schultze M, Hofstetter M et al. Single-cycle nonlinear optics[J]. Science, 320, 1614-1617(2008).

    [32] Sansone G, Benedetti E, Calegari F et al. Isolated single-cycle attosecond pulses[J]. Science, 314, 443-446(2006).

    [33] Mashiko H, Gilbertson S, Chini M et al. Extreme ultraviolet supercontinua supporting pulse durations of less than one atomic unit of time[J]. Optics Letters, 34, 3337-3339(2009).

    [34] Popmintchev T, Chen M C, Popmintchev D et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 336, 1287-1291(2012).

    [35] Mashiko H, Oguri K, Sogawa T. Attosecond pulse generation in carbon K-edge region (284 eV) with sub-250 μJ driving laser using generalized double optical gating method[J]. Applied Physics Letters, 102, 171111(2013).

    [36] Teichmann S M, Silva F, Cousin S L et al. 0.5-keV soft X-ray attosecond continua[J]. Nature Communications, 7, 11493(2016).

    [37] Drescher M, Hentschel M, Kienberger R et al. Time-resolved atomic inner-shell spectroscopy[J]. Nature, 419, 803-807(2002).

    [38] Liu J P, Li Y Q, Wang L et al. Coherent control of atomic inner-shell X-ray lasing via perturbed valence-shell transitions[J]. Physical Review A, 104, L031101(2021).

    [39] Schultze M, Fiess M, Karpowicz N et al. Delay in photoemission[J]. Science, 328, 1658-1662(2010).

    [40] Vos J, Cattaneo L, Patchkovskii S et al. Orientation-dependent stereo Wigner time delay and electron localization in a small molecule[J]. Science, 360, 1326-1330(2018).

    [41] Nandi S, Plésiat E, Zhong S et al. Attosecond timing of electron emission from a molecular shape resonance[J]. Science Advances, 6, eaba7762(2020).

    [42] Biswas S, Förg B, Ortmann L et al. Probing molecular environment through photoemission delays[J]. Nature Physics, 16, 778-783(2020).

    [43] Calegari F, Ayuso D, Trabattoni A et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses[J]. Science, 346, 336-339(2014).

    [44] Kraus P M, Mignolet B, Baykusheva D et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene[J]. Science, 350, 790-795(2015).

    [45] Yong H W, Sun S C, Gu B et al. Attosecond charge migration in molecules imaged by combined X-ray and electron diffraction[J]. Journal of the American Chemical Society, 144, 20710-20716(2022).

    [46] He L X, Sun S Q, Lan P F et al. Filming movies of attosecond charge migration in single molecules with high harmonic spectroscopy[J]. Nature Communications, 13, 4595(2022).

    [47] He L X, He Y Q, Sun S Q et al. Attosecond probing and control of charge migration in carbon-chain molecule[J]. Advanced Photonics, 5, 056001(2023).

    [48] Johnson A S, Perez-Salinas D, Siddiqui K M et al. Ultrafast X-ray imaging of the light-induced phase transition in VO2[J]. Nature Physics, 19, 215-220(2023).

    [49] Mashiko H, Oguri K, Yamaguchi T et al. Petahertz optical drive with wide-bandgap semiconductor[J]. Nature Physics, 12, 741-745(2016).

    [50] Garg M, Zhan M, Luu T T et al. Multi-petahertz electronic metrology[J]. Nature, 538, 359-363(2016).

    [51] Mashiko H, Chisuga Y, Katayama I et al. Multi-petahertz electron interference in Cr∶Al2O3 solid-state material[J]. Nature Communications, 9, 1468(2018).

    [52] Gong X C, Heck S, Jelovina D et al. Attosecond spectroscopy of size-resolved water clusters[J]. Nature, 609, 507-511(2022).

    [53] Yin Z, Chang Y P, Balčiūnas T et al. Femtosecond proton transfer in urea solutions probed by X-ray spectroscopy[J]. Nature, 619, 749-754(2023).

    [54] Kim K T, Zhang C M, Shiner A D et al. Manipulation of quantum paths for space-time characterization of attosecond pulses[J]. Nature Physics, 9, 159-163(2013).

    [55] Kim K T, Zhang C M, Ruchon T et al. Photonic streaking of attosecond pulse trains[J]. Nature Photonics, 7, 651-656(2013).

    [56] Wheeler J A, Borot A, Monchocé S et al. Attosecond lighthouses from plasma mirrors[J]. Nature Photonics, 6, 829-833(2012).

    [57] Vincenti H, Quéré F. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses[J]. Physical Review Letters, 108, 113904(2012).

    [58] He L X, Hu J C, Sun S Q et al. All-optical spatio-temporal metrology for isolated attosecond pulses[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 55, 205601(2022).

    [59] Yang Z, Cao W, Mo Y L et al. All-optical attosecond time domain interferometry[J]. National Science Review, 8, nwaa211(2020).

    [60] Yang Z, Cao W, Chen X et al. All-optical frequency-resolved optical gating for isolated attosecond pulse reconstruction[J]. Optics Letters, 45, 567-570(2020).

    [61] Mairesse Y, Gobert O, Breger P et al. High harmonic XUV spectral phase interferometry for direct electric-field reconstruction[J]. Physical Review Letters, 94, 173903(2005).

    [62] Cormier E, Walmsley I A, Kosik E M et al. Self-referencing, spectrally, or spatially encoded spectral interferometry for the complete characterization of attosecond electromagnetic pulses[J]. Physical Review Letters, 94, 033905(2005).

    [63] Itatani J, Quéré F, Yudin G L et al. Attosecond streak camera[J]. Physical Review Letters, 88, 173903(2002).

    [64] Cao W, Lu P X. Ultrafast measurement techniques using high-order harmonic based attosecond light sources (invited)[J]. Acta Photonica Sinica, 50, 0850203(2021).

    [65] Wei Z Y, Zhong S Y, He X K et al. Progresses and trends in attosecond optics[J]. Chinese Journal of Lasers, 48, 0501001(2021).

    [66] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 81, 163-234(2009).

    [67] Zhao K, Gao Y T, Zhu X X et al. Principle and technology of attosecond pulse characterization[J]. Chinese Science Bulletin, 66, 835-846(2021).

    [68] Li J, Lu J, Chew A et al. Attosecond science based on high harmonic generation from gases and solids[J]. Nature Communications, 11, 2748(2020).

    [69] Orfanos I, Makos I, Liontos I et al. Attosecond pulse metrology[J]. APL Photonics, 4, 080901(2019).

    [70] Young L, Ueda K, Gühr M et al. Roadmap of ultrafast X-ray atomic and molecular physics[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 51, 032003(2018).

    [71] Calegari F, Sansone G, Stagira S et al. Advances in attosecond science[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 49, 062001(2016).

    [72] Chang Z H, Corkum P B, Leone S R. Attosecond optics and technology: progress to date and future prospects[J]. Journal of the Optical Society of America B, 33, 1081-1097(2016).

    [73] Gallmann L, Cirelli C, Keller U. Attosecond science: recent highlights and future trends[J]. Annual Review of Physical Chemistry, 63, 447-469(2012).

    [74] Sansone G, Poletto L, Nisoli M. High-energy attosecond light sources[J]. Nature Photonics, 5, 655-663(2011).

    [75] Zhao Z X, Chang Z H, Tong X M et al. Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements[J]. Optics Express, 13, 1966-1977(2005).

    [76] Li S Q, Guo Z H, Coffee R N et al. Characterizing isolated attosecond pulses with angular streaking[J]. Optics Express, 26, 4531-4547(2018).

    [77] Hartmann N, Hartmann G, Heider R et al. Attosecond time-energy structure of X-ray free-electron laser pulses[J]. Nature Photonics, 12, 215-220(2018).

    [78] Zhao X, Li S Q, Driver T et al. Characterization of single-shot attosecond pulses with angular streaking photoelectron spectra[J]. Physical Review A, 105, 013111(2022).

    [79] Goulielmakis E, Loh Z H, Wirth A et al. Real-time observation of valence electron motion[J]. Nature, 466, 739-743(2010).

    [80] Cavalieri A L, Müller N, Uphues T et al. Attosecond spectroscopy in condensed matter[J]. Nature, 449, 1029-1032(2007).

    [81] Kovács K, Tosa V. Macroscopic attosecond chirp compensation[J]. Optics Express, 27, 21872-21879(2019).

    [82] Chang Z H. Attosecond chirp compensation in water window by plasma dispersion[J]. Optics Express, 26, 33238-33244(2018).

    [83] Ko D H, Kim K T, Nam C H. Attosecond-chirp compensation with material dispersion to produce near transform-limited attosecond pulses[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 45, 074015(2012).

    [84] Kim K T, Kang K S, Park M N et al. Self-compression of attosecond high-order harmonic pulses[J]. Physical Review Letters, 99, 223904(2007).

    [85] Morlens A S, Balcou P, Zeitoun P et al. Compression of attosecond harmonic pulses by extreme-ultraviolet chirped mirrors[J]. Optics Letters, 30, 1554-1556(2005).

    [86] Kim K T, Kim C M, Baik M G et al. Single sub-50-attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion[J]. Physical Review A, 69, 051805(2004).

    [87] Yakovlev V S, Gagnon J, Karpowicz N et al. Attosecond streaking enables the measurement of quantum phase[J]. Physical Review Letters, 105, 073001(2010).

    [88] Han M, Ji J B, Balčiūnas T et al. Attosecond circular-dichroism chronoscopy of electron vortices[J]. Nature Physics, 19, 230-236(2023).

    [89] Reduzzi M, Carpeggiani P, Kühn S et al. Advances in high-order harmonic generation sources for time-resolved investigations[J]. Journal of Electron Spectroscopy and Related Phenomena, 204, 257-268(2015).

    [90] Uiberacker M, Uphues T, Schultze M et al. Attosecond real-time observation of electron tunnelling in atoms[J]. Nature, 446, 627-632(2007).

    [91] Gagnon J, Goulielmakis E, Yakovlev V S. The accurate FROG characterization of attosecond pulses from streaking measurements[J]. Applied Physics B, 92, 25-32(2008).

    [92] Mairesse Y, Quéré F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts[J]. Physical Review A, 71, 011401(2005).

    [93] Chini M, Gilbertson S, Khan S D et al. Characterizing ultrabroadband attosecond lasers[J]. Optics Express, 18, 13006-13016(2010).

    [94] Lucchini M, Lucarelli G D, Murari M et al. Few-femtosecond extreme-ultraviolet pulses fully reconstructed by a ptychographic technique[J]. Optics Express, 26, 6771-6784(2018).

    [95] Lucchini M, Nisoli M. Refined ptychographic reconstruction of attosecond pulses[J]. Applied Sciences, 8, 2563(2018).

    [96] Lucchini M, Brügmann M H, Ludwig A et al. Ptychographic reconstruction of attosecond pulses[J]. Optics Express, 23, 29502-29513(2015).

    [97] Keathley P D, Bhardwaj S, Moses J et al. Volkov transform generalized projection algorithm for attosecond pulse characterization[J]. New Journal of Physics, 18, 073009(2016).

    [98] Zhao X, Wei H, Wu Y et al. Phase-retrieval algorithm for the characterization of broadband single attosecond pulses[J]. Physical Review A, 95, 043407(2017).

    [99] Zhao X, Wang S J, Yu W W et al. Metrology of time-domain soft X-ray attosecond pulses and reevaluation of pulse durations of three recent experiments[J]. Physical Review Applied, 13, 034043(2020).

    [100] Brunner C, Duensing A, Schröder C et al. Deep learning in attosecond metrology[J]. Optics Express, 30, 15669-15684(2022).

    [101] Nishizaki Y, Horisaki R, Kitaguchi K et al. Analysis of non-iterative phase retrieval based on machine learning[J]. Optical Review, 27, 136-141(2020).

    [102] White J, Chang Z H. Attosecond streaking phase retrieval with neural network[J]. Optics Express, 27, 4799-4807(2019).

    [103] Kane D J, Trebino R. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating[J]. IEEE Journal of Quantum Electronics, 29, 571-579(1993).

    [104] Sweetser J N, Fittinghoff D N, Trebino R. Transient-grating frequency-resolved optical gating[J]. Optics Letters, 22, 519-521(1997).

    [105] Kane D J. Real-time measurement of ultrashort laser pulses using principal component generalized projections[J]. IEEE Journal of Selected Topics in Quantum Electronics, 4, 278-284(1998).

    [106] Xue B, Midorikawa K, Takahashi E J. Gigawatt-class, tabletop, isolated-attosecond-pulse light source[J]. Optica, 9, 360-363(2022).

    [107] Hoppe W. Beugung im inhomogenen primärstrahlwellenfeld. I. prinzip einer phasenmessung von elektronenbeungungsinterferenzen[J]. Acta Crystallographica Section A, 25, 495-501(1969).

    [108] Rodenburg J M, Hurst A C, Cullis A G. Transmission microscopy without lenses for objects of unlimited size[J]. Ultramicroscopy, 107, 227-231(2007).

    [109] Laurent G, Cao W, Ben-Itzhak I et al. Attosecond pulse characterization[J]. Optics Express, 21, 16914-16927(2013).

    [110] Bhardwaj S, Son S K, Hong K H et al. Recombination-amplitude calculations of noble gases, in both length and acceleration forms, beyond the strong-field approximation[J]. Physical Review A, 88, 053405(2013).

    [111] Anderson D. Algorithms for minimization without derivatives[J]. IEEE Transactions on Automatic Control, 19, 632-633(1974).

    [112] Pirozhkov A S, Mori M, Ogura K et al. Transient-grating FROG for measurement of sub-10-fs to few-ps amplified pulses[C], MC8(2008).

    [113] Cousin S L, Di Palo N, Buades B et al. Attosecond streaking in the water window: a new regime of attosecond pulse characterization[J]. Physical Review X, 7, 041030(2017).

    [114] Zahavy T, Dikopoltsev A, Cohen O et al. Deep learning reconstruction of ultrashort pulses[C](2018).

    Tools

    Get Citation

    Copy Citation Text

    Jiacan Wang, Fan Xiao, Xiaowei Wang, Li Wang, Wenkai Tao, Lingyi Zhao, Xi ao Li, Zengxiu Zhao. Research Progress of Isolated Attosecond Pulse Characterization[J]. Chinese Journal of Lasers, 2024, 51(7): 0701003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Dec. 16, 2023

    Accepted: Feb. 1, 2024

    Published Online: Mar. 29, 2024

    The Author Email: Wang Xiaowei (xiaowei.wang@nudt.edu.cn), Zhao Zengxiu (zhaozengxiu@nudt.edu.cn)

    DOI:10.3788/CJL231535

    CSTR:32183.14.CJL231535

    Topics