Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 941(2025)
Interface Engineering Technology for High-Performance Inverted Inorganic Perovskite Solar Cells Prepared in Air
[1] [1] WANG J G, CHE Y H, DUAN Y W, et al. 21.15%-efficiency and stable -CsPbI3 perovskite solar cells enabled by an acyloin ligand[J]. Adv Mater, 2023, 35(12): 2210223.
[2] [2] WU W W, XIONG H, DENG J H, et al. Rotatable skeleton for the alleviation of thermally accumulated defects in inorganic perovskite solar cells[J]. ACS Energy Lett, 2023, 8(5): 2284–2291.
[3] [3] XU C Z, ZHANG S C, FAN W Q, et al. Pushing the limit of open-circuit voltage deficitviamodifying buried interface in CsPbI3 perovskite solar cells[J]. Adv Mater, 2023, 35(7): 2207172.
[4] [4] WANG S L, QI S S, SUN H R, et al. Nanoscale local contacts enable inverted inorganic perovskite solar cells with 20.8 % efficiency[J]. Angew Chem Int Ed, 2024, 63(19): e202400018.
[5] [5] XU T F, XIANG W C, KUBICKI D J, et al. Simultaneous lattice engineering and defect controlviacadmium incorporation for high-performance inorganic perovskite solar cells[J]. Adv Sci, 2022, 9(36): e2204486.
[6] [6] LIU T R, ZHAO X M, ZHONG X J, et al. Improved absorber phase stability, performance, and lifetime in inorganic perovskite solar cells with alkyltrimethoxysilane strain-release layers at the perovskite/TiO2 interface[J]. ACS Energy Lett, 2022, 7(10): 3531–3538.
[7] [7] YUAN J F, ZHANG D, DENG B B, et al. High efficiency inorganic perovskite solar cells based on low trap density and high carrier mobility CsPbI3 films[J]. Adv Funct Mater, 2022, 32(47): 2209070.
[8] [8] ZHANG J R, CHE B, ZHAO W G, et al. Polar species for effective dielectric regulation to achieve high-performance CsPbI3 solar cells[J]. Adv Mater, 2022, 34(41): e2202735.
[9] [9] WANG S L, SUN H R, WANG P Y, et al. Small molecule regulatory strategy for inorganic perovskite solar cells with 368mV ofVOC deficit and its application in tandem devices[J]. Adv Energ Mater 2024, 14 (26), 2400151.
[10] [10] NI Z Y, BAO C X, LIU Y, et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells[J]. Science, 2020, 367(6484): 1352–1358.
[11] [11] WANG S L, WANG P Y, SHI B, et al. Inorganic perovskite surface reconfiguration for stable inverted solar cells with 20.38% efficiency and its application in tandem devices[J]. Adv Mater, 2023, 35(28): e2300581.
[12] [12] CHU X B, YE Q F, WANG Z H, et al. Surfacein situreconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency[J]. Nat Energy, 2023, 8: 372–380.
[13] [13] LU C Y, GUO X M, ZHANG W X, et al. Efficient inverted CsPbI3 solar cells with Pb─S contained organosulfide-halide perovskite heterojunction[J]. Adv Funct Mater, 2024, 34(39): 2403563.
[14] [14] ZHANG S A, ZHANG L, TIAN Q W, et al. Spontaneous construction of multidimensional heterostructure enables enhanced hole extraction for inorganic perovskite solar cells to exceed 20% efficiency[J]. Adv Energy Mater, 2022, 12(1): 2103007.
[15] [15] HEO J H, PARK J K, LEE H J, et al. Inorganic-derived 0D perovskite induced surface lattice arrangement for efficient and stable all-inorganic perovskite solar cells[J]. Adv Mater, 2024, 36(45): 2408387.
[16] [16] HEO J H, ZHANG F, PARK J K, et al. Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells[J]. Joule, 2022, 6(7): 1672–1688.
[17] [17] TAN S, YU B C, CUI Y Q, et al. Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics[J]. Angew Chem Int Ed, 2022, 61(23): e202201300.
[18] [18] XU T F, XIANG W C, YANG J J, et al. Interface modification for efficient and stable inverted inorganic perovskite solar cells[J]. Adv Mater, 2023, 35(31): e2303346.
[19] [19] LI T X, LI W, WANG K, et al. Ambient air processed inverted inorganic perovskite solar cells with over 21 % efficiency enabled by multifunctional ethacridine lactate[J]. Angew Chem Int Ed, 2024, 63(36): e202407508.
[20] [20] LI T X, WANG K, TONG Y, et al.In situdehydration condensation of self-assembled molecules enables stabilization of CsPbI3 perovskites for efficient photovoltaics[J]. Adv Funct Mater, 2024, 34(51): 2409621.
[21] [21] WANG Z Z, XU T F, LI N, et al. Interfacial engineering with trivalent cations for efficient and stable inverted inorganic perovskite solar cells[J]. Energy Environ Sci, 2024, 17(19): 7271–7280.
[22] [22] LU C Y, LI X D, GUO X M, et al. Efficient inverted CsPbI3 perovskite solar cells fabricated in common air[J]. Chem Eng J, 2023, 452: 139495.
[23] [23] LUO M, WANG S L, ZHU Z, et al. Novel cathode buffer layer enabling over 21.6%/20.9% efficiency in wide bandgap/inorganic perovskite solar cells[J]. Nano Energy, 2024, 121: 109162.
[24] [24] JIANG Y, XU T F, DU H Q, et al. Organic-inorganic hybrid nature enables efficient and stable CsPbI3- based perovskite solar cells[J]. Joule, 2023, 7(12): 2905–2922.
[25] [25] YANG M, MO K W, ZHU X L, et al. Controlling nucleation and crystallization of CsPbI3 perovskites for efficient inverted solar cells[J]. Small, 2024, 20(28): 2310749.
[26] [26] WANG S L, WANG P Y, CHEN B B, et al. Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%[J]. eScience, 2022, 2(3): 339–346.
[27] [27] FU S, LI X D, WAN J Y, et al.In situstabilized CsPbI3 for air-fabricated inverted inorganic perovskite photovoltaics with wide humidity operating window[J]. Adv Funct Mater, 2022, 32(14): 2111116.
[28] [28] WANG X T, WANG Y, CHEN Y T, et al. Efficient and stable CsPbI3 inorganic perovskite photovoltaics enabled by crystal secondary growth[J]. Adv Mater, 2021, 33(44): e2103688.
[29] [29] SUN H R, WANG S L, QI S S, et al. Surface defects management byin situetching with methanol for efficient inverted inorganic perovskite solar cells[J]. Adv Funct Mater, 2023, 33(23): 2213913.
[30] [30] LIU X, WANG X, ZHANG T, et al. Organic tetrabutylammonium cation intercalation to heal inorganic CsPbI3 perovskite[J]. Angew Chem Int Ed, 2021, 60(22): 12351–12355.
Get Citation
Copy Citation Text
WANG Sanlong, GAO Jingping, ZU Ge, XU Wenhui, LUAN Huixu. Interface Engineering Technology for High-Performance Inverted Inorganic Perovskite Solar Cells Prepared in Air[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 941
Category:
Received: --
Accepted: May. 29, 2025
Published Online: May. 29, 2025
The Author Email: LUAN Huixu (20233213@neepu.edu.cn)