Acta Optica Sinica, Volume. 43, Issue 16, 1623009(2023)

Fabry-Pérot Optical Microcavity and Its Application

Qingquan Liu1,3, Xueyu Guan1,3,4, Hengyi Cui1,3,4, Shaowei Wang1,3,4、*, and Wei Lu1,2,3,4、**
Author Affiliations
  • 1State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 3Shanghai Engineering Research Center of Energy-Saving Coatings, Shanghai 200083, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(131)

    [1] Tang J F, Gu P F, Liu X[M]. Modern optical thin film technology(2006).

    [2] Wang S W. Research on new optical and electronic functional materials[D](2003).

    [3] Wang S W, Chen X S, Lu W et al. Integrated optical filter arrays fabricated by using the combinatorial etching technique[J]. Optics Letters, 31, 332-334(2006).

    [4] Wang S W, Liu D, Lin B et al. 16  ×  1 integrated filter array in the MIR region prepared by using a combinatorial etching technique[J]. Applied Physics B, 82, 637-641(2006).

    [5] Wang S W, Xia C S, Chen X S et al. Concept of a high-resolution miniature spectrometer using an integrated filter array[J]. Optics Letters, 32, 632-634(2007).

    [6] Huang E, Ma Q, Liu Z W. Etalon array reconstructive spectrometry[J]. Scientific Reports, 7, 40693(2017).

    [7] McClung A, Samudrala S, Torfeh M et al. Snapshot spectral imaging with parallel metasystems[J]. Science Advances, 6, eabc7646(2020).

    [8] Liu C Y, Ding Y, Liu S et al. Development status and trend of filter hyperspectral camera(Invited)[J]. Infrared and Laser Engineering, 51, 20210981(2022).

    [9] Xuan Z Y, Liu Q Q, Cui Z Z et al. On-chip short-wave infrared multispectral detector based on integrated Fabry-Pérot microcavities array[J]. Chinese Optics Letters, 20, 061302(2022).

    [10] Xuan Z Y, Wang Z, Liu Q Q et al. Short-wave infrared chip-spectrometer by using laser direct-writing grayscale lithography[J]. Advanced Optical Materials, 10, 2200284(2022).

    [11] Deng H, Haug H, Yamamoto Y. Exciton-polariton bose-einstein condensation[J]. Reviews of Modern Physics, 82, 1489-1537(2010).

    [12] Trichet A A P, Dolan P R, Coles D M et al. Topographic control of open-access microcavities at the nanometer scale[J]. Optics Express, 23, 17205-17216(2015).

    [13] Flatten L C, Trichet A A P, Smith J M. Spectral engineering of coupled open-access microcavities[J]. Laser & Photonics Reviews, 10, 257-263(2016).

    [14] Shaltout A M, Kim J, Boltasseva A et al. Ultrathin and multicolour optical cavities with embedded metasurfaces[J]. Nature Communications, 9, 2673(2018).

    [15] Zambon N C, St-Jean P, Milićević M et al. Optically controlling the emission chirality of microlasers[J]. Nature Photonics, 13, 283-288(2019).

    [16] Qiao Z, Wan Z Y, Xie G Q et al. Multi-vortex laser enabling spatial and temporal encoding[J]. PhotoniX, 1, 1-14(2020).

    [17] Sroor H, Huang Y W, Sephton B et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nature Photonics, 14, 498-503(2020).

    [18] Liu Q Q, Li C L, Xie M B et al. Metainterface and application for high-performance spectro-polarimetric filter[J]. ACS Photonics, 10, 125-133(2023).

    [19] Ossiander M, Meretska M L, Rourke S et al. Metasurface-stabilized optical microcavities[J]. Nature Communications, 14, 1114(2023).

    [20] Liu Q Q, Zhao X C, Li C L et al. Coupled Tamm plasmon polaritons induced narrow bandpass filter with ultra-wide stopband[J]. Nano Research, 15, 4563-4568(2022).

    [21] Liu Q Q. Research on new effects of narrow band spectrum regulation of micro/nano structures[D](2023).

    [22] Kavokin A V, Shelykh I A, Malpuech G. Lossless interface modes at the boundary between two periodic dielectric structures[J]. Physical Review B, 72, 233102(2005).

    [23] Kaliteevski M, Iorsh I, Brand S et al. Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror[J]. Physical Review B, 76, 165415(2007).

    [24] Wang S. Principles of distributed feedback and distributed Bragg-reflector lasers[J]. IEEE Journal of Quantum Electronics, 10, 413-427(1974).

    [25] Joannopoulos J D, Meade R, Winn J N. Photonic crystals: molding the flow of light[J]. Pinceton: Pinceton Univ Press(1995).

    [26] Sakoda K[M]. Optical properties of photonic crystals(2004).

    [27] MacLeod H A, MacLeod H A[M]. Thin-film optical filters(2010).

    [28] Yang H U, D'Archangel J, Sundheimer M L et al. Optical dielectric function of silver[J]. Physical Review B, 91, 235137(2015).

    [29] Qian L. Research on physical layer security and delay guarantee technology of visible light communication network[D](2021).

    [30] Chen Y Y. Application of photon entanglement in quantum information processing[D](2019).

    [31] Li M Z, Han D H, Wang X[M]. Spectral analysis technology and its application(2006).

    [32] Liu J X[M]. Practical near infrared spectroscopy analysis technology(2008).

    [33] Percival D B, Walden A T[M]. Spectral analysis for physical applications(1993).

    [34] Correia J H, de Graaf G, Kong S H et al. Single-chip CMOS optical microspectrometer[J]. Sensors and Actuators A: Physical, 82, 191-197(2000).

    [35] Wang Y, Gong Y. Design of multispectral imaging spectrometer using linear variable filter[J]. Laser & Optoelectronics Progress, 53, 013003(2016).

    [36] Li H B. Research on spectral imaging technology based on linear gradient filter[D](2018).

    [37] Vane G, Mika A M. Linear-wedge spectrometer[J]. Proceedings of SPIE, 1298, 127-131(1990).

    [38] Li W J, Wang C L, Zheng X B et al. Review of imaging spectrometer based on linear variable filter[J]. Infrared, 36, 1-7(2015).

    [39] Gat N, Subramanian S, Ross S et al. Thermal Infrared Imaging Spectrometer (TIRIS) status report[J]. Proceedings of SPIE, 3061, 284-291(1997).

    [40] Zhang L, Anthon E W, Harrison J C et al. Miniature spectrometer based on linear variable interference filters[J]. Proceedings of SPIE, 3855, 42-50(1999).

    [41] Kiran Kumar A S, Chowdhury A R. Hyper-Spectral Imager in visible and near-infrared band for lunar compositional mapping[J]. Journal of Earth System Science, 114, 721-724(2005).

    [42] Loesel J, Laubier D. Study of accessible performances of a spectro imager using a wedge filter[J]. Proceedings of SPIE, 7100, 710013(2008).

    [43] Qian S N, Bergeron M, Girard R et al. Concept study of Canadian hyperspectral mission[C], 2578-2581(2014).

    [44] Grabarnik S, Taccola M, Maresi L et al. Compact multispectral and hyperspectral imagers based on a wide field of view TMA[J]. Proceedings of SPIE, 10565, 1056505(2017).

    [45] Sémery A, Réess J M, Lemarquis F et al. Wedge filter imaging spectrometer[J]. Proceedings of SPIE, 10567, 1056720(2017).

    [46] Dong Y, You Z, Hao Y C. Hyperspectral remote sensing system for nanosatellite-imaging spectrometer based on spatially linear variable filter (SVFIS)[J]. Journal of Astronautics, 23, 12-14, 29(2002).

    [47] Xu X X, Lin H B, Yu G et al. Research of image spectrometer using linear variable interference filter[J]. Spectroscopy and Spectral Analysis, 22, 713-717(2002).

    [48] Fan B, Li G Z, Cheng X B et al. Production and measurement of linear variable filter[J]. Optical Instruments, 28, 95-103(2006).

    [49] Chen T, Luo C T, Liu H K et al. Development of multi-band linear variable filters[J]. Opto-Electronic Engineering, 34, 72-75(2007).

    [50] Qin J Y, Luo C T, Ma M J. Mask design for linear variable filters[J]. Vacuum and Cryogenics, 13, 57-62(2007).

    [51] Zhang J, Gao J S, Li Y D. Linear variable filter with high dispersion coefficient[J]. Optics and Precision Engineering, 23, 1221-1226(2015).

    [52] Yu X Y. Development and application of a handheld near-infrared spectrometer based on a linear variable filter for measuring the internal quality of fruit[D](2017).

    [53] Yuan J Z. Research on noninvasive measurement of human hemoglobin by near infrared spectroscopy[D](2017).

    [54] Fan X H, Liu C Y, Jin G et al. Small and high-resolution spaceborne hyperspectral imaging spectrometer[J]. Optics and Precision Engineering, 29, 463-473(2021).

    [55] Fan X H, Liu C Y, Liu S A et al. The instrument design of lightweight and large field of view high-resolution hyperspectral camera[J]. Sensors, 21, 2276(2021).

    [56] Wang S W, Liu D Q, Lin B et al. Realization of integrated narrow bandpass filters in the infrared region[J]. International Journal of Infrared and Millimeter Waves, 25, 1677-1683(2004).

    [57] Wang S W, Ji R N, Lu W. Applications of optical coatings on spectral selective structures[M]. Aliofkhazraei M, Ali N, Chipara M, et al. Handbook of modern coating technologies, 269-319(2021).

    [58] Jiao H F, Wu Y G, Tian G X et al. Two-chamber integrated multichannel narrowband filter prepared by a multistep etching method[J]. Applied Optics, 46, 867-871(2007).

    [59] Wang X L, Albrecht A, Mai H H et al. High resolution 3D NanoImprint technology: template fabrication, application in Fabry-Pérot-filter-array-based optical nanospectrometers[J]. Microelectronic Engineering, 110, 44-51(2013).

    [60] Yang Z M, Chen Y Q, Zhou Y M et al. Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities[J]. Advanced Optical Materials, 5, 1700029(2017).

    [61] Williams C, Gordon G S D, Wilkinson T D et al. Grayscale-to-color: scalable fabrication of custom multispectral filter arrays[J]. ACS Photonics, 6, 3132-3141(2019).

    [62] Horie Y, Arbabi A, Arbabi E et al. Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures[J]. Optics Express, 24, 11677-11682(2016).

    [63] Yang Z Y, Albrow-Owen T, Cai W W et al. Miniaturization of optical spectrometers[J]. Science, 371, eabe0722(2021).

    [64] Liu Q Q, Xuan Z Y, Wang Z et al. Low-cost micro-spectrometer based on a nano-imprint and spectral-feature reconstruction algorithm[J]. Optics Letters, 47, 2923-2926(2022).

    [65] Bao J, Bawendi M G. A colloidal quantum dot spectrometer[J]. Nature, 523, 67-70(2015).

    [66] Yang Z, Albrow-Owen T, Cui H et al. Single-nanowire spectrometers[J]. Science, 365, 1017-1020(2019).

    [67] Meng J J, Cadusch J J, Crozier K B. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm[J]. Nano Letters, 20, 320-328(2020).

    [68] Wang Z, Yi S, Chen A et al. Single-shot on-chip spectral sensors based on photonic crystal slabs[J]. Nature Communications, 10, 1020(2019).

    [69] Chang C C, Lee H N. On the estimation of target spectrum for filter-array based spectrometers[J]. Optics Express, 16, 1056-1061(2008).

    [70] Huang M H, Mao S, Feick H et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 292, 1897-1899(2001).

    [71] Choi H J, Johnson J C, He R R et al. Self-organized GaN quantum wire UV lasers[J]. The Journal of Physical Chemistry B, 107, 8721-8725(2003).

    [72] Agarwal R, Barrelet C J, Lieber C M. Lasing in single cadmium sulfide nanowire optical cavities[J]. Nano Letters, 5, 917-920(2005).

    [73] Pan A L, Liu R B, Zhang Q L et al. Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts[J]. The Journal of Physical Chemistry C, 111, 14253-14256(2007).

    [74] Saxena D, Mokkapati S, Parkinson P et al. Optically pumped room-temperature GaAs nanowire lasers[J]. Nature Photonics, 7, 963-968(2013).

    [75] Zhang Q L, Wang S W, Liu X X et al. Low threshold, single-mode laser based on individual CdS nanoribbons in dielectric DBR microcavity[J]. Nano Energy, 30, 481-487(2016).

    [76] Cui Z Z, Yu Z P, Zhao X C et al. On-chip multiwavelength single-mode lasers with CdSe nanoribbons-embedded microcavities[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 17, 2370005(2023).

    [77] Huang C Y, Zou C, Mao C Y et al. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability[J]. ACS Photonics, 4, 2281-2289(2017).

    [78] Zhang Y S, Wang S W, Chen S L et al. Wavelength-tunable mid-infrared lasing from black phosphorus nanosheets[J]. Advanced Materials, 32, 1808319(2020).

    [79] Zhang J A, Zhao X C, Liu Q Q et al. Low-threshold single-mode laser in perovskite microdiscs direct-synthesized into planar microcavity[J]. Applied Physics Letters, 120, 071110(2022).

    [80] Andreani L C, Panzarini G, Gérard J M. Strong-coupling regime for quantum boxes in pillar microcavities: theory[J]. Physical Review B, 60, 13276-13279(1999).

    [82] Purcell E M. Spontaneous emission probabilities at radio frequencies[J]. Physical Review, 69, 681(1946).

    [83] Notomi M. Manipulating light with strongly modulated photonic crystals[J]. Reports on Progress in Physics, 73, 096501(2010).

    [84] Gibbs H M, Khitrova G, Koch S W. Exciton-polariton light-semiconductor coupling effects[J]. Nature Photonics, 5, 273-282(2011).

    [85] Liu X Z, Zhang X Y, Zhang S P et al. Light-matter coupling of two-dimensional semiconductors in micro-nano optical cavities[J]. Acta Optica Sinica, 41, 0823003(2021).

    [86] Weisbuch C, Nishioka M, Ishikawa A et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity[J]. Physical Review Letters, 69, 3314-3317(1992).

    [87] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [88] Liu X Z, Galfsky T, Sun Z et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 9, 30-34(2015).

    [89] Zhao X C, Yan Y H, Cui Z Z et al. Realization of strong coupling between 2D excitons and cavity photons at room temperature[J]. Optics Letters, 45, 6571-6574(2020).

    [90] Dufferwiel S, Lyons T P, Solnyshkov D D et al. Valley-addressable polaritons in atomically thin semiconductors[J]. Nature Photonics, 11, 497-501(2017).

    [91] Król M, Lekenta K, Mirek R et al. Valley polarization of exciton-polaritons in monolayer WSe2 in a tunable microcavity[J]. Nanoscale, 11, 9574-9579(2019).

    [92] Jin C H, Regan E C, Yan A M et al. Observation of Moiré excitons in WSe2/WS2 heterostructure superlattices[J]. Nature, 567, 76-80(2019).

    [93] Tran K, Moody G, Wu F C et al. Evidence for Moiré excitons in van der waals heterostructures[J]. Nature, 567, 71-75(2019).

    [94] Yuan L, Zheng B Y, Kunstmann J et al. Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers[J]. Nature Materials, 19, 617-623(2020).

    [95] Król M, Rechcińska K, Nogajewski K et al. Exciton-polaritons in multilayer WSe2 in a planar microcavity[J]. 2D Materials, 7, 015006(2019).

    [96] Rupprecht C, Klaas M, Knopf H et al. Demonstration of a polariton step potential by local variation of light-matter coupling in a van-der-Waals heterostructure[J]. Optics Express, 28, 18649-18657(2020).

    [97] Zhao X C, Cui Z Z, Ge A P et al. Exciton–polaritons of hBN/WS2 heterostructure in cavity observed at room temperature[J]. Applied Physics Letters, 121, 231106(2022).

    [98] Kavokin A, Liew T C H, Schneider C et al. Polariton condensates for classical and quantum computing[J]. Nature Reviews Physics, 4, 435-451(2022).

    [99] Imamoglu A, Ram R J, Pau S et al. Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers[J]. Physical Review A, 53, 4250-4253(1996).

    [100] Deng H, Weihs G, Santori C et al. Condensation of semiconductor microcavity exciton polaritons[J]. Science, 298, 199-202(2002).

    [101] Richard M, Kasprzak J, André R et al. Experimental evidence for nonequilibrium Bose condensation of exciton polaritons[J]. Physical Review B, 72, 201301(2005).

    [102] Kasprzak J, Richard M, Kundermann S et al. Bose-einstein condensation of exciton polaritons[J]. Nature, 443, 409-414(2006).

    [103] Christopoulos S, von Högersthal G B H, Grundy A J D et al. Room-temperature polariton lasing in semiconductor microcavities[J]. Physical Review Letters, 98, 126405(2007).

    [104] Bajoni D, Senellart P, Wertz E et al. Polariton laser using single micropillar GaAs–GaAlAs semiconductor cavities[J]. Physical Review Letters, 100, 047401(2008).

    [105] Zhao J X, Su R, Fieramosca A et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature[J]. Nano Letters, 21, 3331-3339(2021).

    [106] Su R, Wang J, Zhao J X et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites[J]. Science Advances, 4, eaau0244(2018).

    [107] Luo C H, Chen X X, Wu S. Analysis of sensing characteristics of parallel Fabry-Pérot interferometer based on vernier effect[J]. Acta Optica Sinica, 43, 0506002(2023).

    [108] Wang T T, Ge Y X, Chang J H et al. Refractive index sensing characteristic of a hybrid-Fabry-Pérot interferometer based on an in-fiber ellipsoidal cavity[J]. Acta Physica Sinica, 63, 240701(2014).

    [109] Song P, Jing Z G, Li A et al. Refractive index measurement of liquid based on open fiber fabry-perot interferometer[J]. Chinese Journal of Lasers, 44, 1204007(2017).

    [110] Chen K, Yang B L, Deng H et al. Simultaneous measurement of acoustic pressure and temperature using a Fabry-Perot interferometric fiber-optic cantilever sensor[J]. Optics Express, 28, 15050-15061(2020).

    [111] Su H, Zhao C L, Zhang Z R et al. High sensitivity fabry-Pérot interferometric temperature sensor based on three different microcavity states[J]. Acta Photonica Sinica, 50, 0906007(2021).

    [112] Zhao Y N, Wang W, Niu H L et al. Micro end fiber F-P humidity sensor based on Agr film[J]. Journal of Optoelectronics·Laser, 33, 465-470(2022).

    [113] Liu Y T, Gong H P, Lu X et al. Optical fiber humidity sensor based on vernier effect of Fabry-Perot interferometers with microsphere[J]. Optical Fiber Technology, 76, 103222(2023).

    [114] Cui Q S, Thakur P, Rablau C et al. Miniature optical fiber pressure sensor with exfoliated graphene diaphragm[J]. IEEE Sensors Journal, 19, 5621-5631(2019).

    [115] Yu C X, He Y L, He C J et al. Design of optical fiber force sensor for minimally invasive surgical probe[J]. Optics and Precision Engineering, 30, 2421-2429(2022).

    [116] Huang Y, Tao J, Huang X. Research progress on F-P interference-based fiber-optic sensors[J]. Sensors, 16, 1424(2016).

    [117] Yin X, Wan S P, Xiong X Z et al. Study of a optical fiber acoustic sensing system based on F-P microcavity structure[J]. Laser & Optoelectronics Progress, 58, 0312003(2021).

    [118] Wu Z N, Tang D L, Wang Y Y et al. Optical fiber gas sensor based on organic polymer[J]. Acta Photonica Sinica, 47, 0306003(2018).

    [119] Wang C, Zhang X Z, Jiang J F et al. High-speed airflow measurement system based on optical fiber fabry-perot sensing[J]. Acta Optica Sinica, 40, 1206005(2020).

    [120] Yang S T, Wang H Y, Meng L Z et al. Dual-FBG and F-P cavity compound optical fiber sensor for simultaneous measurement of bending, temperature and strain[J]. Journal of Lightwave Technology, 41, 1582-1588(2023).

    [121] Fu X H, Liu L X, Huang S M et al. Simultaneous measurement of temperature and refractive index with F-P microcavity sensor based on graded-index few mode fiber[J]. Optics Communications, 455, 124577(2020).

    [122] Markowski K, Jędrzejewski K, Marzęcki M et al. Linearly chirped tapered fiber-Bragg-grating-based Fabry–Perot cavity and its application in simultaneous strain and temperature measurement[J]. Optics Letters, 42, 1464-1467(2017).

    [123] Cui Z Z, Yan Y H, Liu Q Q et al. Accurate determination of low-dimensional materials’ complex refractive index by cavity resonant method[J]. Optical Materials, 131, 112682(2022).

    [124] Humar M, Gather M C, Yun S H. Cellular dye lasers: lasing thresholds and sensing in a planar resonator[J]. Optics Express, 23, 27865-27679(2015).

    [125] Chen Y C, Chen Q S, Zhang T T et al. Versatile tissue lasers based on high-Q Fabry-Pérot microcavities[J]. Lab on a Chip, 17, 538-548(2017).

    [126] Gong C Y, Qiao Z, Yuan Z Y et al. Laser modes: topological encoded vector beams for monitoring amyloid-lipid interactions in microcavity[J]. Advanced Science, 8, 2170066(2021).

    [127] Yuan Z Y, Cheng X, Zhou Y K et al. Distinguishing small molecules in microcavity with molecular laser polarization[J]. ACS Photonics, 7, 1908-1914(2020).

    [128] Yuan Z Y, Zhou Y K, Qiao Z et al. Stimulated chiral light–matter interactions in biological microlasers[J]. ACS Nano, 15, 8965-8975(2021).

    [129] Gong C Y, Sun F Y, Yang G et al. Multifunctional laser imaging of cancer cell secretion with hybrid liquid crystal resonators[J]. Laser & Photonics Reviews, 16, 2270036(2022).

    [130] Gather M C, Yun S H. Single-cell biological lasers[J]. Nature Photonics, 5, 406-410(2011).

    [131] Li F, Li Y M, Cai Y et al. Tunable open-access microcavities for solid-state quantum photonics and polaritonics[J]. Advanced Quantum Technologies, 2, 1970061(2019).

    Tools

    Get Citation

    Copy Citation Text

    Qingquan Liu, Xueyu Guan, Hengyi Cui, Shaowei Wang, Wei Lu. Fabry-Pérot Optical Microcavity and Its Application[J]. Acta Optica Sinica, 2023, 43(16): 1623009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: May. 4, 2023

    Accepted: Jun. 27, 2023

    Published Online: Aug. 1, 2023

    The Author Email: Wang Shaowei (wangshw@mail.sitp.ac.cn), Lu Wei (luwei@mail.sitp.ac.cn)

    DOI:10.3788/AOS230904

    Topics