Laser Journal, Volume. 45, Issue 7, 157(2024)
Remote sensing laser image feature localization technology based on deep learning
[1] [1] Zhang Hong, Wu Zhiwei, Wang Jicheng, et al. Unsupervised band selection for hyperspectral image classification using the Wasserstein metric-based configuration entropy[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 405-415.
[2] [2] Sun Weiwei, Du Qian. Graph-regularized fast and robust principal component analysis for hyperspectral band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3185-3195.
[3] [3] Gao Peichao, Wang Jicheng, Zhang Hong, et al. Boltzmann entropy-based unsupervised band selection for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(3): 462-466.
[9] [9] Wei Lifei, Yu Ming, Zhong Yanfei, et al. Hyperspectral image classification method based on space-spectral fusion conditional random field[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 343-354.
[13] [13] Liang Yueji, Ren Chao, Huang Yibang, et al. Multi-star linear regression retrieval model for monitoring soil moisture using GPS-IR[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 833-842.
Get Citation
Copy Citation Text
LUO Tong, WANG Lanyi. Remote sensing laser image feature localization technology based on deep learning[J]. Laser Journal, 2024, 45(7): 157
Category:
Received: Nov. 22, 2023
Accepted: Dec. 20, 2024
Published Online: Dec. 20, 2024
The Author Email: