Acta Optica Sinica, Volume. 34, Issue 11, 1110001(2014)
Image Registration Algorithm Based on Sparse Random Projection and Scale-Invariant Feature Transform
[1] [1] D G Lowe. Object recognition from local scale-invariant features [C]. Proceedings of the International Conference on Computer, ICCV, 1999, 2: 1150-1157.
[2] [2] D G Lowe. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[3] [3] K Mikolajczyk, C Schmid. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
[4] [4] Y Ke, R Sukthankar. PCA-SIFT: A more distinctive representation for local image descriptors [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, 2: 506-513.
[5] [5] A E A Hakim, A A Farag. CSIFT : A SIFT descriptor with color invariant characteristics [C] . IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, 2: 1978-1983.
[6] [6] H Bay, T Tuytelaars, L V Gool. SURF: speeded up robust features [C]. Proceedings of the ninth European Conference on Computer Vision, 2006. 404-417.
[7] [7] G S Yu, J M Morel. ASIFT: a new framework for fully affine invariant image comparison [J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 438-460.
[8] [8] Haihua Cui, Wenhe Liao, Ning Dai, et al.. Registration and integration algorithm in structured light three-dimensional scanning based on scale-invariant feature matching of multi-source images [J]. Chin Opt Lett, 2012, 10(9): 091001.
[9] [9] Wang Min, Liu Weiguang. Advanced algorithm based on SIFT and its application in binocular stereo vision [J]. Computer Engineering and Applications, 2013, 49(2): 203-206.
[10] [10] E Candès, J Romberg, Terence Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans Information Theory, 2006, 52(2): 489-509.
[11] [11] D Donoho. Compressed sensing [J]. IEEE Trans Information Theory, 2006, 52(4): 1289-306.
[12] [12] Fang Hong, Zhang Quanbing, Wei sui. Method of image reconstruction based on very sparse random projection [J]. Computer Engineering and Applications, 2007, 43(22): 25-27.
[14] [14] M Rostami, O Michailovich, Z Wang. Image deblurring using derivative compressed sensing for optical imaging application [J]. IEEE Transactions on Image Processing, 2012, 21(7): 3139-3149.
[16] [16] S T Li, H T Yin, L Y Fang. Remote sensing image fusion via sparse representations over learned dictionaries [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4779-478.
[17] [17] Yin Wen, Li Yuanxiang, Zhou Zeming, et al.. Remote sensing image fusion based on sparse representation [J]. Acta Optica Sinica, 2013, 33(4): 0428003.
[18] [18] Xu Wei, Leng Chengcai, Yu Naigong, et al.. An equivalence graph cut method based on wavelet transform for SAR image registration [J]. Nanotechnology and Precision Engineering, 2013, 11(1): 14-19.
Get Citation
Copy Citation Text
Yang Sa, Yang Chunling. Image Registration Algorithm Based on Sparse Random Projection and Scale-Invariant Feature Transform[J]. Acta Optica Sinica, 2014, 34(11): 1110001
Category: Image Processing
Received: Apr. 22, 2014
Accepted: --
Published Online: Oct. 13, 2014
The Author Email: Sa Yang (yangsa@gdei.edu.cn)