Laser & Infrared, Volume. 55, Issue 2, 313(2025)

Unsupervised infrared pedestrian re-identification based on global feature enhancement

WANG Xiao-hong and MENG Yang-liu
Author Affiliations
  • University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    References(18)

    [5] [5] Yang J, Shen X, Tian X, et al. Local convolutional neural networks for person re-identification[C]//Proceedings of the 26th ACM international conference on multimedia.2018: 1074-1082.

    [6] [6] Sun Y, Zheng L, Yang Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 480-496.

    [7] [7] Lian J, Wang D H, Du X, et al. Exploiting robust memory features for unsupervised reidentification[C]//Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Cham: Springer Nature Switzerland, 2022: 655-667.

    [8] [8] Dai Z, Wang G, Yuan W, et al. Cluster contrast for unsupervised person re-identification[C]//Proceedings of the Asian Conference on Computer Vision, 2022: 1142-1160.

    [9] [9] Ye M, Ruan W, Du B, et al. Channel augmented joint learning for visible-infrared recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 13567-13576.

    [10] [10] Yang B, Ye M, Chen J, et al. Augmented dual-contrastive aggregation learning for unsupervised visible-infrared person re-identification[C]//Proceedings of the 30th ACM International Conference on Multimedia, 2022: 2843-2851.

    [11] [11] Ge Y, Chen D, Li H. Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification[J/OL]. arXiv preprint arXiv: 2001.01526, 2020.

    [12] [12] Zheng Y, Tang S, Teng G, et al. Online pseudo label generation by hierarchical cluster dynamics for adaptive person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 8371-8381.

    [13] [13] Zhai Y, Lu S, Ye Q, et al. Ad-cluster: augmented discriminative clustering for domain adaptive person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9021-9030.

    [16] [16] Liu Y, Shao Z, Hoffmann N. Global attention mechanism: Retain information to enhance channel-spatial interactions[J/OL]. arXiv preprint arXiv: 2112.05561, 2021.

    [17] [17] Zhang X, Li D, Wang Z, et al. Implicit sample extension for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 7369-7378.

    [18] [18] Han X, Yu X, Li G, et al. Rethinking sampling strategies for unsupervised person re-identification[J]. IEEE Transactions on Image Processing, 2022, 32: 29-42.

    [19] [19] Tong H Y, Ng K W. A bottom-up clustering approach to identify bus driving patterns and to develop bus driving cycles for Hong Kong[J]. Environmental Science and Pollution Research, 2021, 28: 14343-14357.

    [20] [20] Wang, D. and Zhang, S. Unsupervised person re-identification via multi-label classification[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 13-19 June 2020: 10981-10990.

    [21] [21] Lin Y, Wu Y, Yan C, et al. Unsupervised person re-identification via cross-camera similarity exploration[J]. IEEE Transactions on Image Processing, 2020, 29: 5481-5490.

    [22] [22] Zeng K, Ning M, Wang Y, et al. Hierarchical clustering with hard-batch triplet loss for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 13657-13665.

    [23] [23] Lian J, Wang D H, Du X, et al. Exploiting robust memory features for unsupervised reidentification[C]//Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Cham: Springer Nature Switzerland, 2022: 655-667.

    [24] [24] Dai Z, Wang G, Yuan W, et al. Cluster contrast for unsupervised person re-identification[C]//Proceedings of the Asian Conference on Computer Vision, 2022: 1142-1160.

    Tools

    Get Citation

    Copy Citation Text

    WANG Xiao-hong, MENG Yang-liu. Unsupervised infrared pedestrian re-identification based on global feature enhancement[J]. Laser & Infrared, 2025, 55(2): 313

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 9, 2024

    Accepted: Apr. 3, 2025

    Published Online: Apr. 3, 2025

    The Author Email:

    DOI:10.3969/j.issn.1001-5078.2025.02.022

    Topics