Piezoelectrics & Acoustooptics, Volume. 46, Issue 5, 617(2024)

A Comprehensive Review on the Development and Applications of Passive Acoustics Based on Piezoelectric Ultrasonic Transducers

MAO Yuchen, SHEN Jiandong, LIU Tao, YANG Jiaqian, DOU Hanjie, ZHANG Wangyang, and MU Xiaojing
Author Affiliations
  • National Defense Key Discipline laboratory of New Micro-Nano Devices and Systems Technology, Chongqing University,Chongqing 400044, China
  • show less
    References(36)

    [1] [1] IZQUIERDO A, DEL VAL L, VILLACORTA, et al. Pedestrian detection using a MEMS acoustic array mounted on a moving vehicle [J]. Sensors and Actuators A: Physical, 2024, 376: 115586.

    [3] [3] SHINDE P B, SHIURKAR U D. MEMS for detection of environmental pollutants: A review pertains to sensors over a couple of decades in 21st century [J]. Materials Today: Proceedings, 2021, 44(1): 615-624.

    [4] [4] BAEK S H, PARK J, KIM D M, et al. Giant piezoelectricity on Si for hyperactive MEMS [J]. Science, 2011, 334(6058): 958-961.

    [5] [5] PIAO C, KIM S H, LEE J K, et al. Non-invasive ultrasonic inspection of sludge accumulation in a pipe [J]. Ultrasonics, 2022, 119: 106602.

    [6] [6] ZHANG Xiyuan, WANG Yu, GAO Xingyao, et al. High-temperature and flexible piezoelectric sensors for Lamb-wave-based structural health monitoring [J]. ACS Appl Mater Interfaces, 2021, 13(4): 47764-47772.

    [7] [7] KUNDU P. Review of rotating machinery elements condition monitoring using acoustic emission signal [J]. Expert Systems with Applications, 2024, 252(B): 124169.

    [8] [8] ROY K, LEE J E Y, LEE, C, et al. Thin-film PMUTs: a review of over 40 years of research [J]. Microsyst Nanoeng, 2023, 9: 95.

    [12] [12] WANG T, KOBAYASHI T, LEE C. Highly sensitive piezoelectric micromachined ultrasonic transducer operated in air [J]. Micro & Nano Letters, 2016, 11(10): 558-562.

    [13] [13] KUMAR A, VARGHESE A, SHARMA A, et al. Recent development and futuristic applications of MEMS based piezoelectric microphones [J]. Sensors and Actuators A: Physical, 2022, 347: 113887.

    [14] [14] WANG H S, HONG S K, LEE J H, et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics [J]. Sci Adv, 2021, 7(7): eabe5683.

    [15] [15] HAN J H, BAE K M, HONG S K, et al. Machine learning-based self-powered acoustic sensor for speaker recognition [J]. Nano Energy, 2018,53: 658-665.

    [16] [16] LI Junhong, WANG Chenghao, REN Wei, et al. ZnO thin film piezoelectric micromachined microphone with symmetric composite vibrating diaphragm [J]. Smart Mater Struct, 2017, 26(5): 055033.

    [17] [17] PARK S, GUAN Xiying, KIM Youngwan, et al. PVDF-based piezoelectric microphone for sound detection inside the cochlea: Toward totally implantable cochlear implants [J]. Trends in Hearing, 2018, 22: 233121651877445.

    [18] [18] HUANG C H, GAO H, TORRI G B, et al. Design, modelling, and characterization of display compatible pMUT device [J]. International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2018: 1-4.

    [19] [19] TIAN Z, SU L, WANG H, et al. Underwater self-powered all-optical wireless ultrasonic sensing, positioning and communication with ultrafast response time and ultrahigh sensitivity [J]. Advanced Optical Materials, 2022, 10(5): 2102091.

    [20] [20] GAO Yang, SONG Jingfeng, LI Shumin, et al. Hydrogel microphones for stealthy underwater listening [J]. Nat Commun, 2016, 7(1):12316.

    [21] [21] WANG Renxin, LIU Yuan, XU Wei, et al. A ‘fitness-wheel-shaped’ MEMS vector hydrophone for 3D spatial acoustic orientation [J]. J Micromech Microeng, 2017, 27(4):045015.

    [24] [24] ASADNIA M, KOTTAPALLI A G P, SHEN Z, et al. Flexible and surface-mountable piezoelectric sensor arrays for underwater sensing in marine vehicles [J], IEEE Sensors J, 2013,13(10): 3918-3925.

    [27] [27] PRIETO M D, MILLAN D Z. Chromatic monitoring of gear mechanical degradation based on acoustic emission [J]. IEEE Trans Ind Electron, 2017, 64(11): 8707-8717.

    [28] [28] GHADARAH N S, AYRE D. A comparative analysis of acoustic emission sensor embedding in glass fibre composite [J]. Composites Science and Technology, 2024, 247: 110392.

    [29] [29] KIM H J, LEE J H, LEE S Y, et al. Acoustic emission reflection signal classification of PVDF-type AE sensor using convolutional neural network-transfer learning [J]. J Intell Manuf, 2023:1572.

    [31] [31] BOUBENIA R, LE MOAL P, BOURBON G, et al. CMUT-based sensor for acoustic emission application: Experimental and theoretical contributions to sensitivity optimization [J]. Sensors, 2021, 21(6): 2042.

    [32] [32] SABOONCHI H, OZEVIN D. MEMS acoustic emission transducers designed with high aspect ratio geometry [J]. Smart Mater Struct, 2013,22(9): 095006.

    [35] [35] XIAO Y, MENG J, YAN H, et al. Novel drainage pipeline breakages detection based on MEMS inertial sensor: From mechanism to application [J]. Journal of Cleaner Production, 2024, 473: 143546.

    [44] [44] LEE S H, KIM Y S, YEO M K, et al. Fully portable continuous real-time auscultation with a soft wearable stethoscope designed for automated disease diagnosis [J]. Sci Adv, 2022,8(21): eabo5867.

    [45] [45] YOO J Y, OH S, SHALISH, et al. Wireless broadband acousto-mechanical sensing system for continuous physiological monitoring [J]. Nat Med, 2023, 29(12): 3137-3148.

    [46] [46] HAN Liuyang, LIANG Weijin, XIE Qisen, et al. Health monitoring via heart, breath, and korotkoff sounds by wearable piezoelectret patches [J]. Advanced Science, 2023,10(28):2301180.

    [47] [47] LU Yuyao, YANG Geng, WANG Shenqiang, et al. Stretchable graphene-hydrogel interfaces for wearable and implantable bioelectronics [J]. Nat Electron, 2023,7(1): 51-65.

    [48] [48] XU Hongcheng, ZHENG Weihao, ZHANG Yang, et al. A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation [J]. Nat Commun, 2023,14(1):7769.

    [49] [49] KANG Y J, ARAFA H M, YOO J Y, et al. Soft skin-interfaced mechano-acoustic sensors for real-time monitoring and patient feedback on respiratory and swallowing biomechanics [J]. NPJ Digit Med, 2022,5(1):147.

    [50] [50] LE T S D, AN Jianing, HUANG Yi, et al. Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors [J]. ACS Nano, 2019,13(11): 13293-13303.

    [51] [51] YANG Qisheng, JIN Weiqiu, ZHANG Qihang, et al. Mixed-modality speech recognition and interaction using a wearable artificial throat [J]. Nat Mach Intell, 2023,5(2): 169-180.

    [52] [52] GAO Xiaoxiang, CHEN Xiangjun, HU Hongjie, et al. A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature [J]. Nat Commun, 2022,13(1): 7757.

    [53] [53] JIN Haoran, ZHENG Zesheng, CUI Zequn, et al. A flexible optoacoustic blood ‘stethoscope’ for noninvasive multiparametric cardiovascular monitoring [J]. Nat Commun, 2023, 14(1):4692.

    [54] [54] LI Hao, DONG Biqin, ZHANG Xian, et al. Disposable ultrasound-sensing chronic cranial window by soft nanoimprinting lithography [J]. Nat Commun, 2019,10(1):4277.

    [55] [55] JIANG Laiming, LU Gengxi, YANG Yang, et al. Photoacoustic and piezo-ultrasound hybrid-induced energy transfer for 3D twining wireless multifunctional implants [J]. Energy Environ Sci, 2021,14(3): 1490-1505.

    Tools

    Get Citation

    Copy Citation Text

    MAO Yuchen, SHEN Jiandong, LIU Tao, YANG Jiaqian, DOU Hanjie, ZHANG Wangyang, MU Xiaojing. A Comprehensive Review on the Development and Applications of Passive Acoustics Based on Piezoelectric Ultrasonic Transducers[J]. Piezoelectrics & Acoustooptics, 2024, 46(5): 617

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 22, 2024

    Accepted: Jan. 17, 2025

    Published Online: Jan. 17, 2025

    The Author Email:

    DOI:10.11977/j.issn.1004-2474.2024.05.001

    Topics