Acta Optica Sinica, Volume. 37, Issue 6, 601001(2017)

Design and Validation of Parallelized Computational Model for Nonspherical Aerosol Scattering Based on Multi-Resolution Time-Domain

Hu Shuai1, Gao Taichang1,2, Li Hao1, Yang Bo2, Chen Ming1, Liu Lei1, and Li Gang3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(23)

    [1] [1] Liou K N, Takano Y. Light scattering by nonspherical particles: Remote sensing and climatic implications[J]. Atmospheric Research, 1994, 31: 271-298.

    [2] [2] Hu Shuai, Gao Taichang, Liu Lei, et al. Simulation of radiation transfer properties of polarized light in non-spherical aerosol using Monte Carlo method[J]. Acta Physica Sinica, 2015, 64(9): 094201.

    [3] [3] Rao R Z. Modern atmospheric optics[M]. Beijing: Scientific Express, 2012: 166-181.

    [4] [4] Liou K N. An introduction to atmospheric radiation[M]. San Diego: Academic Press, 2003.

    [5] [5] Han Yong, Wang Tijian, Rao Ruizhong, et al. Progress in the study of physical-optics characteristics of atmospheric aerosol[J]. Acta Physica Sinica, 2008, 57(11): 7396-7407.

    [6] [6] Hu Shuai, Gao Taichang, Liu Lei. Analysis on scattering characteristics and equivalent Mie scattering errors of nonspherical aerosol[J]. Journal of the Meteorological Sciences, 2014, 34(6): 612-619.

    [8] [8] Herman M, Deuzé J L, Marchand A, et al. Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model[J]. Journal of Geophysical Research, 2005, 110: D10S02.

    [9] [9] Yang P, Liou K N, Bi L, et al. On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization[J]. Advances in Atmospheric Sciences, 2015, 32: 32-63.

    [10] [10] Mishchenko M I, Hovenier J W, Travis L D. Light scattering by nonspherical particles, thoery, measurements, and application[M]. New York: Academic Press, 2000.

    [11] [11] Mishchenko M I, Travis L D. Capabilities and limitations of a current fortran implementation of the T-martrix method for randomly oriented, rotationally symmetric scatterers[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 1998, 60(3): 309-324.

    [12] [12] Bi L, Yang P. Tunneling effects in electromagnetic wave scattering by nonspherical particles: A comparison of the Debye series and physical-geometric optics approximations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 178: 93-107.

    [13] [13] Voshchinnikov N V, Farafonov V G. Optical properties of spheroidal particles[J]. Astrophysics & Space Science, 1993, 204(1): 19-86.

    [14] [14] Al-Rizzo H M, Tranquilla J M. Electromagnetic scattering from dielectrically coated axisymmetric objects using the generalized point-matching technique[J]. Journal of Computational Physics, 1995, 119(2): 356-373.

    [15] [15] Harrington R F. Field computation by moment methods[M]. New York: Macmillan, 1968.

    [16] [16] Draine B T. Discrete-dipole approximation and its application to interstellar graphite grains[J]. Astrophysical Journal, 1988, 333(2): 848-872.

    [17] [17] Yang P, Liou K N. Light scattering by hexagonal ice crystals: Comparison of finite-difference time domain and geometric optics models[J]. Journal of the Optical Society of America A, 1995, 12(1): 162-176.

    [18] [18] Morgan M A, Mei K K. Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution[J]. IEEE Transactions on Antennas & Propagation, 1979, 27(2): 202-214.

    [19] [19] Liu C, Panetta R L, Yang P. The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013, 129: 169-185.

    [20] [20] Liu C, Panetta R L, Yang P. Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2012, 113: 1728-1740.

    [21] [21] Hu Shuai, Gao Taichang, Li Hao, et al. Simulating scattering properties of nonspherical aerosol particles using multi-resolution time-domain method[J]. Acta Physica Sinica, 2017, 66(4): 044207.

    [22] [22] Dai Shaoyu, Wu Zhensen. Application of wavelet-Galerkin time domain method in the composite scattering of target and lossy ground[J]. Acta Physica Sinica, 2008, 57(12): 7636-7640.

    [23] [23] Tentzeris E M, Cangellaris A, Katehi L P B, et al. Multiresolution time-domain (MRTD) adaptive schemes using arbitrary resolutions of wavelets[J]. IEEE Transections on Microwave and Techniques, 2003, 50(2): 501-516.

    Tools

    Get Citation

    Copy Citation Text

    Hu Shuai, Gao Taichang, Li Hao, Yang Bo, Chen Ming, Liu Lei, Li Gang. Design and Validation of Parallelized Computational Model for Nonspherical Aerosol Scattering Based on Multi-Resolution Time-Domain[J]. Acta Optica Sinica, 2017, 37(6): 601001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Jan. 17, 2017

    Accepted: --

    Published Online: Jun. 8, 2017

    The Author Email:

    DOI:10.3788/aos201737.0601001

    Topics