Chinese Optics, Volume. 16, Issue 6, 1293(2023)
Advances in optical fiber tweezer technology based on hetero-core fiber
Fig. 3. Schematic diagrams of hetero-core optical fiber probe coupling structures. (a) Single-mode fiber direct fusion probe in one core, and the two-core light is achieved after coupling; (b) single-mode fiber direct fusion dual-core probe, taper welding area coupled through light[22]; (c) single-mode fiber core-offset splicing multimode probe to generate asymmetric Bessel-like beam by interference[27];(d) single-mode dislocation splicing hollow ring core fiber probe[13]; (e) single-mode fiber nanoprobe coupled hollow photonic crystal fiber[28]
Fig. 4. Probe structure based on multi-core fiber optical tweezers. (a) Cross section of plasma tapered dual-core optical fiber tweezers [19]; (b) three-core optical micro-hand structure and vortex field intensity distribution[38]; (c) Four-core fiber end face microscope photo, fiber diameter is 150 μm and diagonal core spacing is 65 μm; design of fiber tweezers' cross section; a three-dimensional diagram of two convergent beams propagating from the processing diagonal fiber core. The sphere in the convergent region represents a captured cell[15]
Fig. 5. Structure and operating diagram of optical fiber tweezers with ring core structure.(a) Beak-shaped ring-core optic fiber probe and particle force simulation diagram[44]; (b) hollow ring core optical fiber tweezers[13]; (c) cross-section image of annular core fiber, image of annular core fiber probe with silica microspheres, and schematic diagram of dark field optical funnel[14]; (d) schematic diagram of size measurement interference method based on coaxial ring double waveguide.
Fig. 6. The structure and working principle of optical tweezers probe based on other core fiber structures. (a) Elliptical core optical fiber tweezers rotating yeast cells by using LP11 mode laser [57]; (b) schematic diagram of the principle of Bessel-like beam generated by multimode interference; fabricated all-fiber Bessel beam generation and its geometric parameters[16]
|
Get Citation
Copy Citation Text
Hong LI, Ying-xin ZHU, Ya-ni ZHOU, Hai-bo WANG, Ming-li DONG, Lian-qing ZHU. Advances in optical fiber tweezer technology based on hetero-core fiber[J]. Chinese Optics, 2023, 16(6): 1293
Category: Review
Received: Jan. 12, 2023
Accepted: --
Published Online: Nov. 29, 2023
The Author Email: