Chinese Journal of Construction Machinery, Volume. 23, Issue 3, 438(2025)

Intelligent anti-swing control of overhead cranes based on SAC

TANG Weiqiang, WANG Wei, MA Rui, and XU Tianpeng
Author Affiliations
  • College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
  • show less
    References(9)

    [2] [2] CHEN Q R, CHENG W, DU R. Partial state feedback sliding mode control of double-pendulum crane systems using neural networks [C] // 2020 39th Chinese Control Conference(CCC). Shenyang: IEEE, 2020: 706-711.

    [4] [4] ALGHANIM K, MOHAMMED A, ANDANI M T. An input shaping control scheme with application on overhead cranes [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2019, 20(5): 561-573.

    [5] [5] MA X, YANG Z, LIN W, et al. Anti-swing strategy of overhead cranes based on prescribed performance PID control [J]. International Journal of Wireless and Mobile Computing, 2020, 18(2): 194-203.

    [7] [7] ZHU X H, WANG N. Hairpin RNA genetic algorithm based ANFIS for modeling overhead cranes [J]. Mechanical Systems and Signal Processing, 2022, 165: 108326.

    [9] [9] LYU L, SHEN Y, ZHANG S C. The advance of reinforcement learning and deep reinforcement learning [C] // 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms(EEBDA). Changchun: IEEE, 2022: 644-648.

    [11] [11] LI R J, YANG F, XU Y J, et al. Deep reinforcement learning-based swing-free trajectories planning algorithm for UAV with a suspended load [C] // 2022 China Automation Congress(CAC). Xiamen: IEEE, 2022: 6149-6154.

    [12] [12] ZHOU H, DONG Z, ZHAI P, et al. Motion simulation of flying quadruped robot based on deep reinforcement learning [C] // 2021 China Automation Congress(CAC). Beijing: IEEE, 2021: 6747-6752.

    [13] [13] ZHANG H R, ZHAO C H, DING J L. Online reinforcement learning with passivity based stabilizing term for real time overhead crane control without knowledge of the system model [J]. Control Engineering Practice, 2022, 127: 105302.

    [15] [15] SUN N, FANG Y. New energy analytical results for the regulation of underactuated overhead cranes: an end-effector motion-based approach [J]. IEEE Transactions on Indutrial Electronics, 2012, 59(12): 4723-4734.

    Tools

    Get Citation

    Copy Citation Text

    TANG Weiqiang, WANG Wei, MA Rui, XU Tianpeng. Intelligent anti-swing control of overhead cranes based on SAC[J]. Chinese Journal of Construction Machinery, 2025, 23(3): 438

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: --

    Accepted: Aug. 25, 2025

    Published Online: Aug. 25, 2025

    The Author Email:

    DOI:10.15999/j.cnki.311926.2025.03.009

    Topics