Acta Optica Sinica, Volume. 37, Issue 5, 511004(2017)
Hyperspectral Camera Based on Ghost Imaging via Sparsity Constraints with Application of Flat-Field Grating
[1] [1] Green R O, Eastwood M L, Sarture C M, et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (aviris)[J]. Remote Sensing of Environment, 1998, 65(3): 227-248.
[2] [2] Morris H R, Hoyt C C, Treado P J. Imaging spectrometers for fluorescence and raman microscopy: Acousto-optic and liquid crystal tunable filters[J]. Applied Spectroscopy, 1994, 48(7): 857-866.
[3] [3] Lu Minghai, Shen Xia, Han Shensheng. Ghost imaging via compressive sampling based on digital micromirror device[J]. Acta Optica Sinica, 2011, 31(7): 0711002.
[4] [4] Wagadarikar A A, Pitsianis N P, Brady D J, et al. Spectral image estimation for coded aperture snapshot spectral imagers[C]. SPIE, 2008, 7076: 707602.
[5] [5] Liu Z T, Tan S Y, Wu J R, et al. Spectral camera based on ghost imaging via sparsity constraints[J]. Scientific Reports, 2016, 6: 25718.
[6] [6] Cheng J, Han S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 2004, 92(9): 093903.
[7] [7] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation[J]. Physical Review Letters, 2004, 93(9): 093602.
[8] [8] Welsh S S, Edgar M P, Bowman R, et al. Fast full-color computational imaging with single-pixel detectors[J]. Optics Express, 2013, 21(20): 23068-23074.
[9] [9] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79(5): 1744-1747.
[10] [10] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.
[11] [11] Jacobs E W, Fisher Y, Boss R D. Image compression: A study of the iterated transform method[J]. Signal Processing, 1992, 29(3): 251-263.
[12] [12] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[13] [13] Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
[14] [14] Eldar Y C, Kutyniok G. Compressed sensing: Theory and applications[M]. Cambridge: Cambridge University Press, 2012: 53-56.
[15] [15] Stern A, Rivenson Y, Javidi B. Single-shot compressive imaging[C]. SPIE, 2007, 6778:67780J.
[16] [16] Fergus R, Torralba A, Freeman W T. Random lens imaging[R]. MIT CSAIL Technical Report, 2006.
[17] [17] Giglio M, Carpineti M, Vailati A. Space intensity correlations in the near field of the scattered light: A direct measurement of the density correlation function g(r)[J]. Physical Review Letters, 2000, 85(7): 1416.
[18] [18] Cerbino R, Peverini L, Potenza M A C, et al. X-ray-scattering information obtained from near-field speckle[J]. Nature Physics, 2008, 4(3): 238-243.
[19] [19] Wu J, Yang J M, Ding Y K, et al. Flat field grating spectrograph for soft X-ray laser research[J]. High Power Laser & Particle Beams, 2002, 14(4): 489-492.
[20] [20] Kulakova N K, Mirumyants S O, Bugaenko A G. Characteristics of a concave diffraction grating on which a spherical wave is incident[J]. Journal of Optical Technology, 2006, 73(10): 682-686.
[21] [21] Hayat G S, Flamand J, Lacroix M, et al. Designing a new generation of analytical instruments around the new types of holographic diffraction grating[J]. Optical Engineering, 1975, 14(5): 420-425.
[22] [22] Tan Shiyu, Liu Zhentao, Li Enrong, et al. Hyperspectral compressed sensing based on prior images constrained[J]. Acta Optica Sinica, 2015, 35(8): 0811003.
[23] [23] Goodman J W. Introduction to fourier optics[M]. New York: Roberts and Company Publishers, 2005: 154-160.
[25] [25] Cheng Chuanfu, Qi Dongping, Liu Deli, et al. The computational simulations of the Gaussian correlation random surface and its light-scattering speckle field and the analysis of the intensity probability density[J]. Acta Physica Sinica, 1999, 48(9): 1635-1643.
[26] [26] Palmer C A, Loewen E G. Diffraction grating handbook[M]. Ohio: Newport Corporation, 2005: 67-90.
[27] [27] Lerner J M, Chambers R J, Passereau G. Flat field imaging spectroscopy using aberrati on corrected holographic gratings[C]. Los Angeles Technical Symposium: International Society for Optics and Photonics, 1981, 268(12): 122-128.
[28] [28] Sokolova E. Holographic diffraction gratings for flat-field spectrometers[J]. Journal of Modern Optics, 2000, 47(13): 2377-2389.
[29] [29] Zhou Qian, Zeng Lijiang, Li Lifeng. Numerical simulation and experimental demonstration of error compensation between recording structure and use structure of flat-field holographic concave gratings[J]. Spectroscopy and Spectral Analysis, 2008, 28(7): 1674-1678.
[31] [31] Kong Peng. The research on design methods and key fabricating technologies of flat-field holographic concave grating[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2011: 23-63.
[33] [33] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 2009, 95(13): 131110.
[34] [34] Gong W L, Han S S. Super-resolution ghost imaging via compressive sampling reconstruction[J]. Physics, 2009.
Get Citation
Copy Citation Text
Liu Shengying, Liu Zhentao, Wu Jianrong, Li Enrong, Tan Shiyu, Shen Xia, Han Shensheng. Hyperspectral Camera Based on Ghost Imaging via Sparsity Constraints with Application of Flat-Field Grating[J]. Acta Optica Sinica, 2017, 37(5): 511004
Category: Imaging Systems
Received: Dec. 20, 2016
Accepted: --
Published Online: May. 5, 2017
The Author Email: Shengying Liu (shengyl@siom.ac.cn)