Journal of Synthetic Crystals, Volume. 52, Issue 7, 1219(2023)

Cluster Structure of Rare Earth Doped Fluorite Halide Crystals

MA Fengkai1,2、*, ZHANG Zhen2, JIANG Dapeng2, ZHANG Zhonghan2, LI Zhen1, KOU Huamin2, CHEN Zhenqiang1, and SU Liangbi2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(47)

    [1] [1] GAO Z Y, WANG C, SUN W, et al. Froth flotation of fluorite: a review[J]. Advances in Colloid and Interface Science, 2021, 290: 102382.

    [2] [2] JU G D, TU G L, ZHAO Y S. Recent advances in transition-metal-catalyzed selective C-H Alkoxycarbonyldifluoromethylation reactions of aromatic substrates[J]. Synthesis-Stuttgart, 2021, 53: 3699-3715.

    [3] [3] LI H W, WANG R, ZHAO W, et al. Sintered glass-ceramic foams from fluorite tailings and waste glass with calcium phosphate addition[J]. Construction and Building Materials, 2022, 359: 129528.

    [4] [4] HU C, XU C, ZHANG L Y, et al. Development of yttrium-doped BaF2 crystals for future HEP experiments[J]. IEEE Transactions on Nuclear Science, 2019, 66(7): 1854-1860.

    [9] [9] SU S H, WANG J A, LI C, et al. Short-branched fluorinated polyurethane coating exhibiting good comprehensive performance and potential UV degradation in leather waterproofing modification[J]. Coatings, 2021, 11(4): 395.

    [10] [10] VORONIN B M, VOLKOV S V. Ionic conductivity of fluorite type crystals CaF2, SrF2, BaF2, and SrCl2 at high temperatures[J]. Journal of Physics and Chemistry of Solids, 2001, 62(7): 1349-1358.

    [11] [11] WANG H J, KOU H M, WANG Y Z, et al. Irradiation damage of CaF2 with different yttrium concentrations under 193 nm laser[J]. Journal of Inorganic Materials, 2023, 38(2): 219.

    [12] [12] XIAO X E, SUN Q, HU T W, et al. Multifunctional CaF2∶Yb3+, Ho3+, Gd3+ nanocrystals: insight into crystal growth and properties of upconversion luminescence, magnetic, and temperature sensing properties[J]. Inorganic Chemistry, 2022, 61(38): 14934-14946.

    [13] [13] DU S S, WANG Y H. A broad-range temperature sensor dependent on the magnetic and optical properties of SrF2∶Yb3+, Ho3+[J]. CrystEngComm, 2019, 21(9): 1452-1457.

    [14] [14] SOROKIN N I, SOBOLEV B P. Correlation between the fluorine ion conductivities of Sr1-xRxF2+x (CaF2 type) and R1-ySryF3-y (LaF3 type) crystals in the SrF2-RF3 systems (R=La~Nd)[J]. Physics of the Solid State, 2019, 61(11): 2034-2040.

    [15] [15] RONGEAT C, ANJI REDDY M, WITTER R, et al. Solid electrolytes for fluoride ion batteries: ionic conductivity in polycrystalline tysonite-type fluorides[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 2103-2110.

    [16] [16] SUNDBERG J D, DRUFFEL D L, MCRAE L M, et al. High-throughput discovery of fluoride-ion conductors via a decoupled, dynamic, and iterative (DDI) framework[J]. NPJ Computational Materials, 2022, 8: 106.

    [17] [17] ZYCH A, LEFERINK OP REININK A, VAN DER EERDEN K, et al. Luminescence properties of lanthanide doped alkaline earth chlorides under (V)UV and X-ray excitation[J]. Journal of Alloys and Compounds, 2011, 509(13): 4445-4451.

    [18] [18] QIAO S, WANG Y, YIN L, et al. Luminescence properties of color-tunable phosphor material CaF2∶Eu[J]. Journal of Luminescence, 2022, 243: 118667.

    [19] [19] QIN Z P, XIE G Q, MA J, et al. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd, Y∶CaF2 disordered crystal[J]. Optics Letters, 2014, 39(7): 1737-1739.

    [20] [20] KESSLER A, HORNUNG M, KEPPLER S, et al. 16.6 J chirped femtosecond laser pulses from a diode-pumped Yb∶CaF2 amplifier[J]. Optics Letters, 2014, 39(6): 1333-1336.

    [21] [21] WANG Y X, LIU W X, ZHANG Z H, et al. Laser-diode-pumped Tm: SrF2 single crystal for high efficiency CW laser operation at ~2 μm[J]. Optics Letters, 2022, 47(5): 1117-1120.

    [23] [23] TALLANT D R, WRIGHT J C. Selective laser excitation of charge compensated sites in CaF2∶Er3+[J]. The Journal of Chemical Physics, 1975, 63(5): 2074-2085.

    [24] [24] VORONKO Y K, OSIKO V V, SHCHERBAKOV I A. Investigation of the interaction of Nd3+ ions in CaF2, SrF2, and BaF2 crystals (type I)[J]. Soviet Physics JETP, 1969, 28: 838-844.

    [25] [25] DEN HARTOG H W, PEN K F, MEULDIJK J. Defect structure and charge transport in solid solutions Ba1-xLaxF2+x[J]. Physical Review B, 1983, 28(10): 6031-6040.

    [26] [26] CHEETHAM A K, FENDER B F, COOPER M J. Defect structure of calcium fluoride containing excess anions I. Bragg scattering[J]. Journal of Physics C: Solid State Physics, 1971, 4(18): 3107-3121.

    [27] [27] ANDEEN C G, FONTANELLA J J, WINTERSGILL M C, et al. Clustering in rare-earth-doped alkaline earth fluorides (dielectric relaxation)[J]. Journal of Physics C: Solid State Physics, 1981, 14(24): 3557-3574.

    [28] [28] CAPELLETTI R, OKUNO E, MATTHEWS G E, et al. ITC spectra of impurity aggregate in CaF2 crystals doped with trivalent rare-earth ions[J]. Physica Status Solidi (a), 1978, 47(2): 617-624.

    [29] [29] CATLOW C R A, CHADWICK A V, GREAVES G N, et al. Direct observations of the dopant environment in fluorites using EXAFS[J]. Nature, 1984, 312(5995): 601-604.

    [30] [30] BENDALL P J, CATLOW C R A, CORISH J, et al. Defect aggregation in anion-excess fluorites Ⅱ. Clusters containing more than two impurity atoms[J]. Journal of Solid State Chemistry, 1984, 51(2): 159-169.

    [31] [31] LACROIX B, GENEVOIS C, DOUALAN J L, et al. Direct imaging of rare-earth ion clusters in Yb∶CaF2[J]. Physical Review B, 2014, 90(12): 125124.

    [32] [32] MA F K, SU F, ZHOU R F, et al. The defect aggregation of RE3+ (RE=Y, La~Lu) in MF2 (M=Ca, Sr, Ba) fluorites[J]. Materials Research Bulletin, 2020, 125: 110788.

    [33] [33] BEVAN D J M, STRHLE J, GREIS O. The crystal structure of tveitite, an ordered yttrofluorite mineral[J]. Journal of Solid State Chemistry, 1982, 44(1): 75-81.

    [34] [34] SULYANOVA E A, SOBOLEV B P. The universal defect cluster architecture of fluorite-type nanostructured crystals[J]. CrystEngComm, 2022, 24(20): 3762-3769.

    [35] [35] CAI J J, MA C G, YIN M. Factors influencing the structure of the complex-defects in AF2∶RE3+ (A=Ca, Sr and Ba): a first-principles study[J]. Journal of Luminescence, 2022, 250: 119058.

    [36] [36] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, Condensed Matter, 1993, 47(1): 558-561.

    [37] [37] KRESSE G, FURTHMLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.

    [38] [38] BLCHL P E. Projector augmented-wave method[J]. Physical Review B, Condensed Matter, 1994, 50(24): 17953-17979.

    [39] [39] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

    [40] [40] LANY S, ZUNGER A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs[J]. Physical Review B, 2008, 78(23): 235104.

    [41] [41] PERSSON C, ZHAO Y J, LANY S, et al. n-type doping of CuInSe2 and CuGaSe2[J]. Physical Review B, 2005, 72: 035211.

    [42] [42] MAKOV G, PAYNE M C. Periodic boundary conditions in ab initio calculations[J]. Physical Review B, 1995, 51(7): 4014-4022.

    [43] [43] DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study[J]. Physical Review B, 1998, 57(3): 1505-1509.

    [44] [44] WAPENAAR K E D, CATLOW C R A. Association energies in Re3+-doped alkaline-earth fluorides studied by computational methods[J]. Solid State Ionics, 1981, 2(4): 245-251.

    [45] [45] HEIST R H, FONG F K. Maxwell-boltzmann distribution of M3+-F- interstitial pairs in fluorite-type lattices[J]. Physical Review B, 1970, 1(7): 2970-2976.

    [46] [46] SONI H R, GUPTA S K, TALATI M, et al. Ground state and lattice dynamical study of ionic conductors CaF2, SrF2 and BaF2 using density functional theory[J]. Journal of Physics and Chemistry of Solids, 2011, 72(8): 934-939.

    [47] [47] JIANG H T, ORLANDO R, BLANCO M A, et al. First-principles study of the electronic structure of PbF2 in the cubic, orthorhombic, and hexagonal phases[J]. Journal of Physics: Condensed Matter, 2004, 16(18): 3081-3088.

    [48] [48] KOSTIKOVA G P, KOROL′KOV D V, KOSTIKOV Y P. Valence states of lead and bismuth atoms in the high-temperature superconductor BaPb1-xBixO3[J]. Russian Journal of General Chemistry, 2001, 71(7): 1010-1012.

    [49] [49] BROWN I D, ALTERMATT D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database[J]. Acta Crystallographica Section B Structural Science, 1985, 41(4): 244-247.

    [50] [50] MA C G, BRIK M G. First-principles calculations of structural and electronic properties of pure and Tm2+-doped SrCl2[J]. Physica Status Solidi (b), 2013, 250(4): 858-863.

    [51] [51] MA F K, JIANG D P, ZHANG Z, et al. Tailoring the local lattice distortion of Nd3+ by codoping of Y3+ through first principles calculation for tuning the spectroscopic properties[J]. Optical Materials Express, 2019, 9(11): 4256.

    Tools

    Get Citation

    Copy Citation Text

    MA Fengkai, ZHANG Zhen, JIANG Dapeng, ZHANG Zhonghan, LI Zhen, KOU Huamin, CHEN Zhenqiang, SU Liangbi. Cluster Structure of Rare Earth Doped Fluorite Halide Crystals[J]. Journal of Synthetic Crystals, 2023, 52(7): 1219

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 30, 2023

    Accepted: --

    Published Online: Oct. 28, 2023

    The Author Email: MA Fengkai (mafengkai@jnu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics