Laser & Optoelectronics Progress, Volume. 59, Issue 22, 2228004(2022)

Building Segmentation Model of Remote Sensing Image Combining Multiscale Attention and Edge Supervision

Xiaoyu Yang and Xili Wang*
Author Affiliations
  • School of Computer Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
  • show less
    Figures & Tables(13)
    Structure of MAE-Net
    Multiscale attention module
    Split convolution concat module
    SEWeight module
    Edge extraction module
    Segmentation results of ablation experiment on WHU Building test set. (a) Original images; (b) image label;(c) baseline processing result; (d) baseline with MSA processing result; (e) baseline with EEB processing result; (f) MAE-Net processing result
    Segmentation results of comparative experiment on WHU Building validation set.(a) Original images; (b) image label; (c) U-Net processing result; (d) MAE-Net processing result
    Segmentation results of comparative experiment on Satellite Dataset Ⅱ (East Asia) test set. (a) Original images; (b) image label; (c) U-Net processing result; (d) MAE-Net processing result
    • Table 1. Comparison of evaluation results of ablation experiment on WHU Building test set

      View table

      Table 1. Comparison of evaluation results of ablation experiment on WHU Building test set

      No.BaselineMSAEEBF1-scoreIOU
      1××0.94200.8904
      2×0.95020.9052
      3×0.94960.9041
      40.95200.9084
    • Table 2. Comparison of train and test time of ablation experiment on WHU Building test set

      View table

      Table 2. Comparison of train and test time of ablation experiment on WHU Building test set

      No.BaselineMSAEEBTrain time /hTest time per picture /s
      1××5.130.077
      2×8.160.078
      3×6.830.066
      49.130.089
    • Table 3. Accuracy results of two models for building and building edge recognition

      View table

      Table 3. Accuracy results of two models for building and building edge recognition

      ScaleU-NetMAE-Net
      IOUF1-scoreIOUF1-score
      Small-scale(image 1+image 2)0.9040.9490.9100.953
      Large-scale(image 5+image 6)0.9180.9570.9270.963
      Edge-scale(image 3+image 4)0.4380.6090.5450.706
    • Table 4. Experimental results of different methods on WHU building validation set

      View table

      Table 4. Experimental results of different methods on WHU building validation set

      MethodF1-scorePRIOU
      U-Net60.91350.95420.88260.8813
      SiU-Net160.93850.93800.93900.8840
      SRINet170.94230.95210.93280.8909
      Ra-CGAN10.94900.95100.94600.8960
      DeNet180.94800.95000.94600.9012
      MAE-Net0.95420.95540.95300.9124
    • Table 5. Experimental results of different methods with the Satellite Dataset Ⅱ (East Asia) test set

      View table

      Table 5. Experimental results of different methods with the Satellite Dataset Ⅱ (East Asia) test set

      MethodF1-scorePRIOU
      U-Net60.7460.6530.8690.594
      SiU-Net160.7580.7250.7960.611
      AugU-Net190.7800.640
      RSIS-MLCA200.7960.8260.7680.661
      Ra-CGAN10.8120.8520.7750.677
      MAE-Net0.8020.8280.8050.690
    Tools

    Get Citation

    Copy Citation Text

    Xiaoyu Yang, Xili Wang. Building Segmentation Model of Remote Sensing Image Combining Multiscale Attention and Edge Supervision[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2228004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Aug. 17, 2021

    Accepted: Oct. 13, 2021

    Published Online: Oct. 13, 2022

    The Author Email: Xili Wang (wangxili@snnu.edu.cn)

    DOI:10.3788/LOP202259.2228004

    Topics