Laser & Optoelectronics Progress, Volume. 62, Issue 18, 1817005(2025)

Advances in Three-Dimensional Single-Molecule Tracking Microscopy with Closed-Loop Feedback Control (Invited)

Quan Lu1,3, Yu Wu2,3, Ting Mei2,3, Yue Hu1、**, and Shangguo Hou3、*
Author Affiliations
  • 1School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang , China
  • 2School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, Heilongjiang , China
  • 3Systems and Physical Biology Institute, Shenzhen Bay Laboratory, Shenzhen 518132, Guangdong , China
  • show less
    References(163)

    [1] Moerner W E, Orrit M. Illuminating single molecules in condensed matter[J]. Science, 283, 1670-1676(1999).

    [2] Wang C, Han B R, Zhou R B et al. Real-time imaging of translation on single mRNA transcripts in live cells[J]. Cell, 165, 990-1001(2016).

    [3] Shida J F, Ma K B, Toll H W et al. Multicolor long-term single-particle tracking using 10 nm upconverting nanoparticles[J]. Nano Letters, 24, 4194-4201(2024).

    [4] Semmer F, Emperauger M C, Lopez C et al. 3D real-time two-photon microscopy device for single-particle holographic tracking (3D-red shot)[J]. ACS Photonics, 10, 3426-3434(2023).

    [5] Laurent F, Floderer C, Favard C et al. Mapping spatio-temporal dynamics of single biomolecules in living cells[J]. Physical Biology, 17, 015003(2020).

    [6] Delarue M, Brittingham G P, Pfeffer S et al. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding[J]. Cell, 174, 338-349(2018).

    [7] Gao Z S, Li Q, Fan C H et al. Deciphering live-cell biomolecular dynamics with single-molecule fluorescence imaging[J]. Science Bulletin, 69, 1823-1828(2024).

    [8] Hou S G, Johnson C, Welsher K. Real-time 3D single particle tracking: towards active feedback single molecule spectroscopy in live cells[J]. Molecules, 24, 2826(2019).

    [9] Stracy M, Uphoff S, de Leon F G et al. In vivo single-molecule imaging of bacterial DNA replication, transcription, and repair[J]. FEBS Letters, 588, 3585-3594(2014).

    [10] Kapanidis A N, Margeat E, Ho S O et al. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism[J]. Science, 314, 1144-1147(2006).

    [11] Robinson A, van Oijen A M. Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies[J]. Nature Reviews Microbiology, 11, 303-315(2013).

    [12] Alhadid Y, Chung S, Lerner E et al. Studying transcription initiation by RNA polymerase with diffusion-based single-molecule fluorescence[J]. Protein Science, 26, 1278-1290(2017).

    [13] Blanchard S C. Single-molecule observations of ribosome function[J]. Current Opinion in Structural Biology, 19, 103-109(2009).

    [14] Klostermeier D. Single-molecule FRET reveals nucleotide-driven conformational changes in molecular machines and their link to RNA unwinding and DNA supercoiling[J]. Biochemical Society Transactions, 39, 611-616(2011).

    [15] Bisaria N, Herschlag D. Probing the kinetic and thermodynamic consequences of the tetraloop/tetraloop receptor monovalent ion-binding site in P4‒P6 RNA by smFRET[J]. Biochemical Society Transactions, 43, 172-178(2015).

    [16] Deniz A A, Laurence T A, Beligere G S et al. Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2[J]. Proceedings of the National Academy of Sciences of the United States of America, 97, 5179-5184(2000).

    [17] Schuler B, Hofmann H. Single-molecule spectroscopy of protein folding dynamics: expanding scope and timescales[J]. Current Opinion in Structural Biology, 23, 36-47(2013).

    [18] Hafner A E, Santen L, Rieger H et al. Run-and-pause dynamics of cytoskeletal motor proteins[J]. Scientific Reports, 6, 37162(2016).

    [19] Li N, Zhao R, Sun Y H et al. Single-molecule imaging and tracking of molecular dynamics in living cells[J]. National Science Review, 4, 739-760(2017).

    [20] Luo F, Qin G G, Xia T et al. Single-molecule imaging of protein interactions and dynamics[J]. Annual Review of Analytical Chemistry, 13, 337-361(2020).

    [22] Shen H, Tauzin L J, Baiyasi R et al. Single particle tracking: from theory to biophysical applications[J]. Chemical Reviews, 117, 7331-7376(2017).

    [23] Kapanidis A N, Lee N K, Laurence T A et al. Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 101, 8936-8941(2004).

    [24] Murakoshi H, Iino R, Kobayashi T et al. Single-molecule imaging analysis of Ras activation in living cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 101, 7317-7322(2004).

    [25] Müller M, Lauster D, Wildenauer H H K et al. Mobility-based quantification of multivalent virus-receptor interactions: new insights into influenza a virus binding mode[J]. Nano Letters, 19, 1875-1882(2019).

    [26] Sun W, Marchuk K, Wang G F et al. Autocalibrated scanning-angle prism-type total internal reflection fluorescence microscopy for nanometer-precision axial position determination[J]. Analytical Chemistry, 82, 2441-2447(2010).

    [27] Kihm K D, Banerjee A, Choi C K et al. Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM)[J]. Experiments in Fluids, 37, 811-824(2004).

    [28] Chen J J, Zhang Z J, Li L et al. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells[J]. Cell, 156, 1274-1285(2014).

    [29] Liu Z, Legant W R, Chen B C et al. 3D imaging of Sox2 enhancer clusters in embryonic stem cells[J]. eLife, 3, e04236(2014).

    [30] Dupont A, Gorelashvili M, Schüller V et al. Three-dimensional single-particle tracking in live cells: news from the third dimension[J]. New Journal of Physics, 15, 075008(2013).

    [31] Brandenburg B, Zhuang X W. Virus trafficking-learning from single-virus tracking[J]. Nature Reviews Microbiology, 5, 197-208(2007).

    [32] Lv C, Lin Y, Sun E Z et al. Internalization of the pseudorabies virus via macropinocytosis analyzed by quantum dot-based single-virus tracking[J]. Chemical Communications, 54, 11184-11187(2018).

    [33] Liang Z P, Li P J, Wang C P et al. Visualizing the transport of porcine reproductive and respiratory syndrome virus in live cells by quantum dots-based single virus tracking[J]. Virologica Sinica, 35, 407-416(2020).

    [34] Prabhat P, Ram S, Ward E S et al. Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions[J]. IEEE Transactions on Nanobioscience, 3, 237-242(2004).

    [35] Knight S C, Xie L Q, Deng W L et al. Dynamics of CRISPR-Cas9 genome interrogation in living cells[J]. Science, 350, 823-826(2015).

    [36] Cheng X D, Cheng X J, Huang R Y et al. Digitally assisted single-particle tracking for accurate analysis of complicated cargo transport dynamics in microtubule networks[J]. Analytical Chemistry, 97, 11469-11477(2025).

    [39] Zhao L Y, Zhong Y N, Wei Y L et al. Microscopic movement of slow-diffusing nanoparticles in cylindrical nanopores studied with three-dimensional tracking[J]. Analytical Chemistry, 88, 5122-5130(2016).

    [41] Zhong Y N, Zhao L Y, Tyrlik P M et al. Investigating diffusing on highly curved water-oil interface using three-dimensional single particle tracking[J]. The Journal of Physical Chemistry C, 121, 8023-8032(2017).

    [42] Zhong Y N, Wang G F. Three-dimensional heterogeneous structure formation on a supported lipid bilayer disclosed by single-particle tracking[J]. Langmuir, 34, 11857-11865(2018).

    [44] Li H, Chen D N, Xu G X et al. Three dimensional multi-molecule tracking in thick samples with extended depth-of-field[J]. Optics Express, 23, 787-794(2015).

    [46] Backer A S, Backlund M P, von Diezmann A R et al. A bisected pupil for studying single-molecule orientational dynamics and its application to three-dimensional super-resolution microscopy[J]. Applied Physics Letters, 104, 193701(2014).

    [49] Thompson M A, Lew M D, Badieirostami M et al. Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function[J]. Nano Letters, 10, 211-218(2010).

    [51] Sun Y J, McKenna J D, Murray J M et al. Parallax: high accuracy three-dimensional single molecule tracking using split images[J]. Nano Letters, 9, 2676-2682(2009).

    [53] Berg H C. How to track bacteria[J]. Review of Scientific Instruments, 42, 868-871(1971).

    [54] Lessard G A, Goodwin P M, Werner J H. Three-dimensional tracking of individual quantum dots[J]. Applied Physics Letters, 91, 224106(2007).

    [55] Lessard G A, Goodwin P M, Werner J H. Three-dimensional tracking of fluorescent particles[J]. Proceedings of SPIE, 6092, 609205(2006).

    [56] Wells N P, Lessard G A, Werner J H. Confocal, three-dimensional tracking of individual quantum dots in high-background environments[J]. Analytical Chemistry, 80, 9830-9834(2008).

    [57] Wells N P, Lessard G A, Goodwin P M et al. Time-resolved three-dimensional molecular tracking in live cells[J]. Nano Letters, 10, 4732-4737(2010).

    [58] Han J J, Kiss C, Bradbury A R M et al. Time-resolved, confocal single-molecule tracking of individual organic dyes and fluorescent proteins in three dimensions[J]. ACS Nano, 6, 8922-8932(2012).

    [59] Keller A M, DeVore M S, Stich D G et al. Multicolor three-dimensional tracking for single-molecule fluorescence resonance energy transfer measurements[J]. Analytical Chemistry, 90, 6109-6115(2018).

    [60] Cang H, Wong C M, Xu C S et al. Confocal three dimensional tracking of a single nanoparticle with concurrent spectroscopic readouts[J]. Applied Physics Letters, 88, 223901(2006).

    [61] Cang H, Xu C S, Montiel D et al. Guiding a confocal microscope by single fluorescent nanoparticles[J]. Optics Letters, 32, 2729-2731(2007).

    [62] Xu C S, Cang H, Montiel D et al. Rapid and quantitative sizing of nanoparticles using three-dimensional single-particle tracking[J]. The Journal of Physical Chemistry C, 111, 32-35(2007).

    [63] Montiel D, Yang H. Real-time three-dimensional single-particle tracking spectroscopy for complex systems[J]. Laser & Photonics Reviews, 4, 374-385(2010).

    [64] Cang H, Montiel D, Xu C S et al. Observation of spectral anisotropy of gold nanoparticles[J]. Journal of Chemical Physics, 129, 044503(2008).

    [65] Qian B, Montiel D, Bregulla A et al. Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging[J]. Chemical Science, 4, 1420-1429(2013).

    [66] Germann J A, Davis L M. Three-dimensional tracking of a single fluorescent nanoparticle using four-focus excitation in a confocal microscope[J]. Optics Express, 22, 5641-5650(2014).

    [67] Perillo E P, Liu Y L, Huynh K et al. Deep and high-resolution three-dimensional tracking of single particles using nonlinear and multiplexed illumination[J]. Nature Communications, 6, 7874(2015).

    [68] Liu Y L, Perillo E P, Ang P et al. Three-dimensional two-color dual-particle tracking microscope for monitoring DNA conformational changes and nanoparticle landings on live cells[J]. ACS Nano, 14, 7927-7939(2020).

    [69] Enderlein J. Tracking of fluorescent molecules diffusing within membranes[J]. Applied Physics B, 71, 773-777(2000).

    [70] Levi V, Ruan Q, Kis-Petikova K et al. Scanning FCS, a novel method for three-dimensional particle tracking[J]. Biochemical Society Transactions, 31, 997-1000(2003).

    [71] Kis-Petikova K, Gratton E. Distance measurement by circular scanning of the excitation beam in the two-photon microscope[J]. Microscopy Research and Technique, 63, 34-49(2004).

    [72] Levi V, Ruan Q Q, Gratton E. 3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells[J]. Biophysical Journal, 88, 2919-2928(2005).

    [73] Annibale P, Dvornikov A, Gratton E. Electrically tunable lens speeds up 3D orbital tracking[J]. Biomedical Optics Express, 6, 2181-2190(2015).

    [74] Lanzanò L C, Gratton E. Orbital Single Particle Tracking on a commercial confocal microscope using piezoelectric stage feedback[J]. Methods and Applications in Fluorescence, 2, 9(2014).

    [75] Katayama Y, Burkacky O, Meyer M et al. Real-time nanomicroscopy via three-dimensional single-particle tracking[J]. Chemphyschem, 10, 2458-2464(2009).

    [76] Reuel N F, Dupont A, Thouvenin O et al. Three-dimensional tracking of carbon nanotubes within living cells[J]. ACS Nano, 6, 5420-5428(2012).

    [79] McHale K, Berglund A J, Mabuchi H. Quantum dot photon statistics measured by three-dimensional particle tracking[J]. Nano Letters, 7, 3535-3539(2007).

    [80] Du K, Liddle J A, Berglund A J. Three-dimensional real-time tracking of nanoparticles at an oil–water interface[J]. Langmuir, 28, 9181-9188(2012).

    [81] Du K, Ko S H, Gallatin G M et al. Quantum dot-DNA origami binding: a single particle, 3D, real-time tracking study[J]. Chemical Communications, 49, 907-909(2013).

    [82] Hou S G, Lang X Q, Welsher K. Robust real-time 3D single-particle tracking using a dynamically moving laser spot[J]. Optics Letters, 42, 2390-2393(2017).

    [83] Hou S G, Welsher K. A protocol for real-time 3D single particle tracking[J]. Journal of Visualized Experiments, 56711(2018).

    [84] Mermillod-Blondin A, McLeod E, Arnold C B. High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens[J]. Optics Letters, 33, 2146-2148(2008).

    [85] Duocastella M, Sun B, Arnold C B. Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics[J]. Journal of Biomedical Optics, 17, 050505(2012).

    [86] Duocastella M, Theriault C, Arnold C B. Three-dimensional particle tracking via tunable color-encoded multiplexing[J]. Optics Letters, 41, 863-866(2016).

    [87] Fields A P, Cohen A E. Optimal tracking of a Brownian particle[J]. Optics Express, 20, 22585-22601(2012).

    [88] Hou S G, Welsher K. An adaptive real-time 3D single particle tracking method for monitoring viral first contacts[J]. Small, 15, e1903039(2019).

    [89] Hou S G, Exell J, Welsher K. Real-time 3D single molecule tracking[J]. Nature Communications, 11, 3607(2020).

    [90] Zheng H L, Sha H, Zhou R et al. Rational development of Nile red derivatives with significantly improved specificity and photostability for advanced fluorescence imaging of lipid droplets[J]. Biosensors and Bioelectronics, 282, 117494(2025).

    [93] Tan X C, Hou S G, Niver A et al. Active-feedback 3D single-molecule tracking using a fast-responding galvo scanning mirror[J]. The Journal of Physical Chemistry A, 127, 6320-6328(2023).

    [94] Karagyozov D, Mihovilovic Skanata M, Lesar A et al. Recording neural activity in unrestrained animals with three-dimensional tracking two-photon microscopy[J]. Cell Reports, 25, 1371-1383(2018).

    [99] Cole F, Zähringer J, Bohlen J et al. Super-resolved FRET and co-tracking in pMINFLUX[J]. Nature Photonics, 18, 478-484(2024).

    [101] Ashley T T, Gan E L, Pan J et al. Tracking single fluorescent particles in three dimensions via extremum seeking[J]. Biomedical Optics Express, 7, 3355-3376(2016).

    [102] Amselem E, Broadwater B, Hävermark T et al. Real-time single-molecule 3D tracking in E. coli based on cross-entropy minimization[J]. Nature Communications, 14, 1336(2023).

    [103] Bucci A, Tortarolo G, Held M O et al. 4D Single-particle tracking with asynchronous read-out single-photon avalanche diode array detector[J]. Nature Communications, 15, 6188(2024).

    [104] Juette M F, Bewersdorf J. Three-dimensional tracking of single fluorescent particles with submillisecond temporal resolution[J]. Nano Letters, 10, 4657-4663(2010).

    [105] Spille J H, Kaminski T P, Scherer K et al. Direct observation of mobility state transitions in RNA trajectories by sensitive single molecule feedback tracking[J]. Nucleic Acids Research, 43, e14(2015).

    [106] Song D L, Zhang X, Li B Y et al. Deep learning-assisted automated multidimensional single particle tracking in living cells[J]. Nano Letters, 24, 3082-3088(2024).

    [107] Welsher K, Yang H. Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles[J]. Nature Nanotechnology, 9, 198-203(2014).

    [108] Wehnekamp F, Plucińska G, Thong R et al. Nanoresolution real-time 3D orbital tracking for studying mitochondrial trafficking in vertebrate axons in vivo[J]. eLife, 8, e46059(2019).

    [109] Lin Y X, Exell J, Lin H T et al. Hour-long, kilohertz sampling rate three-dimensional single-virus tracking in live cells enabled by StayGold fluorescent protein fusions[J]. The Journal of Physical Chemistry. B, 128, 5590-5600(2024).

    [110] DeVore M S, Stich D G, Keller A M et al. Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging[J]. Review of Scientific Instruments, 86, 126102(2015).

    [111] Li W Y, Yin S H, Huang S W et al. The trajectory patterns of single HIV-1 virus-like particle in live CD4 cells: a real time three-dimensional multi-resolution microscopy study using encapsulated nonblinking giant quantum dot[J]. Journal of Microbiology, Immunology and Infection, 56, 257-266(2023).

    [112] Johnson C, Exell J, Lin Y X et al. Capturing the start point of the virus-cell interaction with high-speed 3D single-virus tracking[J]. Nature Methods, 19, 1642-1652(2022).

    [113] Johnson C, Exell J, Kuo J et al. Continuous focal translation enhances rate of point-scan volumetric microscopy[J]. Optics Express, 27, 36241-36258(2019).

    [114] Roehlicke T, Patting M, Rahn H J et al. Spectrally resolved and high speed TCSPC-based fluorescence lifetime imaging (Conference Presentation)[J]. Proceedings of SPIE, 10889, 108890Q(2019).

    [117] Bower A J, Li J, Chaney E J et al. High-speed imaging of transient metabolic dynamics using two-photon fluorescence lifetime imaging microscopy[J]. Optica, 5, 1290-1296(2018).

    [118] Liu X B, Lin D Y, Becker W et al. Fast fluorescence lifetime imaging techniques: a review on challenge and development[J]. Journal of Innovative Optical Health Sciences, 12, 1930003(2019).

    [119] Fornasiero E F, Mandad S, Wildhagen H et al. Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions[J]. Nature Communications, 9, 4230(2018).

    [122] Tian Z, Beckwith J S, Amin M J et al. Leveraging lifetime information to perform real-time 3D single-particle tracking in noisy environments[J]. The Journal of Chemical Physics, 155, 164201(2021).

    [123] Chen Y I, Chang Y J, Nguyen T D et al. Measuring DNA hybridization kinetics in live cells using a time-resolved 3D single-molecule tracking method[J]. Journal of the American Chemical Society, 141, 15747-15750(2019).

    [124] Sha H, Li H Y, Zhang Y B et al. Deep learning-enhanced single-molecule spectrum imaging[J]. APL Photonics, 8, 096102(2023).

    [125] Schubert J, Schulze A, Prodromou C et al. Two-colour single-molecule photoinduced electron transfer fluorescence imaging microscopy of chaperone dynamics[J]. Nature Communications, 12, 6964(2021).

    [126] Harroun S G, Lauzon D, Ebert M C C J C et al. Monitoring protein conformational changes using fluorescent nanoantennas[J]. Nature Methods, 19, 71-80(2021).

    [127] Doppagne B, Neuman T, Soria-Martinez R et al. Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy[J]. Nature Nanotechnology, 15, 207-211(2020).

    [128] Pirchi M, Ziv G, Riven I et al. Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein[J]. Nature Communications, 2, 493(2011).

    [129] König I, Zarrine-Afsar A, Aznauryan M et al. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells[J]. Nature Methods, 12, 773-779(2015).

    [130] Nüesch M F, Pietrek L, Holmstrom E D et al. Nanosecond chain dynamics of single-stranded nucleic acids[J]. Nature Communications, 15, 6010(2024).

    [131] Di Antonio M, Ponjavic A, Radzevičius A et al. Single-molecule visualization of DNA G-quadruplex formation in live cells[J]. Nature Chemistry, 12, 832-837(2020).

    [132] Sanabria H, Rodnin D, Hemmen K et al. Resolving dynamics and function of transient states in single enzyme molecules[J]. Nature Communications, 11, 1231(2020).

    [133] Chu J C, Ejaz A, Lin K M et al. Single-molecule fluorescence multiplexing by multi-parameter spectroscopic detection of nanostructured FRET labels[J]. Nature Nanotechnology, 19, 1150-1157(2024).

    [135] Dong B Q, Almassalha L, Urban B E et al. Super-resolution spectroscopic microscopy via photon localization[J]. Nature Communications, 7, 12290(2016).

    [136] Huang T, Phelps C, Wang J et al. Simultaneous multicolor single-molecule tracking with single-laser excitation via spectral imaging[J]. Biophysical Journal, 114, 301-310(2018).

    [140] Tariq A, Li P C, Chen D S et al. Physically realizable space for the purity-depolarization plane for polarized light scattering media[J]. Physical Review Letters, 119, 033202(2017).

    [142] Mock J J, Smith D R, Schultz S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles[J]. Nano Letters, 3, 485-491(2003).

    [143] Sönnichsen C, Alivisatos A P. Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy[J]. Nano Letters, 5, 301-304(2005).

    [145] Nehl C L, Liao H W, Hafner J H. Optical properties of star-shaped gold nanoparticles[J]. Nano Letters, 6, 683-688(2006).

    [146] Yang H. Single-particle light scattering: imaging and dynamical fluctuations in the polarization and spectral response[J]. The Journal of Physical Chemistry A, 111, 4987-4997(2007).

    [147] Guerra L F, Muir T W, Yang H. Determining the spheroid geometry of individual metallic nanoparticles by two-dimensional single-particle dynamic light scattering[J]. The Journal of Physical Chemistry C, 123, 18565-18572(2019).

    [148] Guerra L F, Muir T W, Yang H. Single-particle dynamic light scattering: shapes of individual nanoparticles[J]. Nano Letters, 19, 5530-5536(2019).

    [150] Yang R W, Yang Y L, Wu T F et al. Wavefront correction with image-based interferometric focus sensing in two-photon microscopy[J]. Nanophotonics, 14, 613-623(2025).

    [151] Li H Y, Lu Q, Wang Z et al. Three-dimensional random-access confocal microscopy with 3D remote focusing system[J]. Communications Engineering, 3, 166(2024).

    [152] Vickers N A, Sharifi F, Andersson S B. Information optimization of laser scanning microscopes for real-time feedback-driven single particle tracking[J]. Optics Express, 31, 21434-21451(2023).

    [155] Grüger H. MOEMS and MEMS-technology, benefits & uses[M]. Portable spectroscopy and spectrometry, 89-113(2021).

    [157] Kukura P, Ewers H, Müller C et al. High-speed nanoscopic tracking of the position and orientation of a single virus[J]. Nature Methods, 6, 923-927(2009).

    [158] Celebrano M, Kukura P, Renn A et al. Single-molecule imaging by optical absorption[J]. Nature Photonics, 5, 95-98(2011).

    [159] Young G, Hundt N, Cole D et al. Quantitative mass imaging of single biological macromolecules[J]. Science, 360, 423-427(2018).

    [160] Kashkanova A D, Blessing M, Gemeinhardt A et al. Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions[J]. Nature Methods, 19, 586-593(2022).

    [161] Squires A H, Lavania A A, Dahlberg P D et al. Interferometric scattering enables fluorescence-free electrokinetic trapping of single nanoparticles in free solution[J]. Nano Letters, 19, 4112-4117(2019).

    [162] Carpenter W B, Lavania A A, Squires A H et al. Label-free anti-Brownian trapping of single nanoparticles in solution[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 128, 20275-20286(2024).

    [163] Carpenter W B, Lavania A A, Borden J S et al. Ratiometric sensing of redox environments inside individual carboxysomes trapped in solution[J]. The Journal of Physical Chemistry Letters, 13, 4455-4462(2022).

    Tools

    Get Citation

    Copy Citation Text

    Quan Lu, Yu Wu, Ting Mei, Yue Hu, Shangguo Hou. Advances in Three-Dimensional Single-Molecule Tracking Microscopy with Closed-Loop Feedback Control (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(18): 1817005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: May. 16, 2025

    Accepted: Jun. 13, 2025

    Published Online: Sep. 12, 2025

    The Author Email: Yue Hu (huyue@hit.edu.cn), Shangguo Hou (shangguo.hou@szbl.ac.cn)

    DOI:10.3788/LOP251237

    CSTR:32186.14.LOP251237

    Topics