Chinese Journal of Lasers, Volume. 41, Issue 9, 903001(2014)
Effects of Laser Shock Processing on High Temperature Fatigue Properties and Fracture Morphologies of K403 Nickel-Based Alloy
[1] [1] B A Cowles. High cycle fatigue in aircraft gas turbines-an industry perspective[J]. International Journal of Fractrue. 1989, 80(2-3): 147-163.
[2] [2] R Fabbro, P Peyre, L Berthe, et al.. Physics and applications of laser-shock processing[J]. Journal of Laser Applications, 1998, 10(6): 265-79.
[4] [4] Li Yuqin, He Weifeng, Li Yinghong, et al.. Effects on technology of aluminizing after laser shock processing in 1Cr11Ni2W2MoV steel[J]. Chinese J Lasers, 2011, 38(7): 0703005.
[5] [5] Li Yuqin, Li Yinghong, He Weifeng, et al.. Wear resistance of 12CrNi3A steel after carburization and laser shock[J]. Chinese J Lasers, 2013, 40(9): 0903004.
[6] [6] R Fabbro, J Foumier, P Ballard, et al.. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784.
[7] [7] J Z Zhou, S Huang, J Sheng, et al.. Effect of repeated impacts on mechanical properties and fatigue fracture morphologies of 6061-T6 aluminum subject to laser peening[J]. Mater Sci Eng A, 2012, 539(1): 360-368.
[8] [8] M Dorman, M B Toparli, N Smyth, et al.. Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects[J]. Mater Sci Eng A, 2012, 548(4): 142-151.
[9] [9] O Hatamleh, A DeWald. An investigation of the peening effects on the residual stresses in friction stir welded 2195 and 7075 aluminum alloy joints[J]. Journal of Materials Processing Technology, 2009, 209(10): 4822-4829.
[10] [10] H Luong, M R Hill. The effects of laser peening on high-cycle fatigue in 7085-T7651 aluminum alloy[J]. Mater Sci Eng A, 2008, 477(1): 208-216.
[11] [11] L Zhou, Y Li, W He, et al.. Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening[J]. Mater Sci Eng A, 2013, 578(4): 181-186.
[12] [12] X Nie, W He, L Zhou, et al.. Experiment investigation of laser shock peening on TC6 titanium alloy to improve high cycle fatigue performance[J]. Mater Sci Eng A, 2014, 594(11): 161-167.
[14] [14] Y Li, L Zhou, W He, et al.. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures[J]. Sci Tech Adv Mater, 2013, 14(5): 055010.
[15] [15] “China Aeronautical Materials Handbook” Editorial Board. China Aeronautical Materials Handbook[M]. Beijing: China Standards Press of China, 2001.
[16] [16] J M Yang, Y C Her, N Han, et al.. Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes[J]. Mater Sci Eng A, 2001, 298(1): 296-299.
[18] [18] N Tao, W Tong, Z Wang, et al.. Mechanical and wear properties of nanostructured surface layer in iron induced by surface mechanical attrition treatment[J]. J Mater Sci Tech, 2003, 19(6): 563-568.
Get Citation
Copy Citation Text
Luo Sihai, He Weifeng, Zhou Liucheng, Lai Zhilin, Chai Yan, He Guangyu. Effects of Laser Shock Processing on High Temperature Fatigue Properties and Fracture Morphologies of K403 Nickel-Based Alloy[J]. Chinese Journal of Lasers, 2014, 41(9): 903001
Category: laser manufacturing
Received: Mar. 10, 2014
Accepted: --
Published Online: Aug. 15, 2014
The Author Email: Sihai Luo (luo_hai@126.com)