Journal of Synthetic Crystals, Volume. 51, Issue 2, 216(2022)
Passively Q-Switched Laser Based on Antimonene Nanosheets
[1] [1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2] [2] LI L, PANG L H, ZHAO Q Y, et al. Niobium disulfide as a new saturable absorber for an ultrafast fiber laser[J]. Nanoscale, 2020, 12(7): 4537-4543.
[3] [3] DONG N N, LI Y X, FENG Y Y, et al. Optical limiting and theoretical modelling of layered transition metal dichalcogenide nanosheets[J]. Scientific Reports, 2015, 5: 14646.
[4] [4] YAN P, CHEN H, YIN J, et al. Large-area tungsten disulfide for ultrafast photonics[J]. Nanoscale, 2017, 9(5): 1871-1877.
[7] [7] ACHARYYA P, KUNDU K, BISWAS K. 2D layered all-inorganic halide perovskites: recent trends in their structure, synthesis and properties[J]. Nanoscale, 2020, 12(41): 21094-21117.
[8] [8] LI X, HOFFMAN J M, KANATZIDIS M G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency[J]. Chemical Reviews, 2021, 121(4): 2230-2291.
[9] [9] LEE E, YOON Y S, KIM D J. Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing[J]. ACS Sensors, 2018, 3(10): 2045-2060.
[10] [10] JIA Y M, YI X Q, LI Z G, et al. Recent advance in biosensing applications based on two-dimensional transition metal oxide nanomaterials[J]. Talanta, 2020, 219: 121308.
[11] [11] CHO C H, CHOE Y S, OH J Y, et al. Self-assembled 2D networks of metal oxide nanomaterials enabling sub-ppm level breathalyzers[J]. ACS Sensors, 2021, 6(9): 3195-3203.
[15] [15] LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.
[16] [16] SCIACCA D, PERIC N, BERTHE M, et al. Account of the diversity of tunneling spectra at the germanene/Al(1 1 1) interface[J]. Journal of Physics: Condensed Matter, 2020, 32(5): 055002.
[17] [17] KOVALSKA E, ANTONATOS N, LUXA J, et al. “Top-down” arsenene production by low-potential electrochemical exfoliation[J]. Inorganic Chemistry, 2020, 59(16): 11259-11265.
[18] [18] MOHAMED ISMAIL M, VIGNESHWARAN J, ARUNBALAJI S, et al. Antimonene nanosheets with enhanced electrochemical performance for energy storage applications[J]. Dalton Transactions, 2020, 49(39): 13717-13725.
[19] [19] FENG T C, LI X H, CHAI T, et al. Bismuthene nanosheets for 1 μm multipulse generation[J]. Langmuir, 2020, 36(1): 3-8.
[20] [20] SHEN C, LIU Y, WU J, et al. Tellurene photodetector with high gain and wide bandwidth[J]. ACS Nano, 2020, 14(1): 303-310.
[21] [21] ZHANG L, FAHAD S, WU H R, et al. Tunable nonlinear optical responses and carrier dynamics of two-dimensional antimonene nanosheets[J]. Nanoscale Horizons, 2020, 5(10): 1420-1429.
[22] [22] ARES P, PALACIOS J J, ABELLN G, et al. Recent progress on antimonene: a new bidimensional material[J]. Advanced Materials, 2018, 30(2): 1703771.
[23] [23] WANG X, HE J J, ZHOU B Q, et al. Bandgap-tunable preparation of smooth and large two-dimensional antimonene[J]. Angewandte Chemie International Edition, 2018, 57(28): 8668-8673.
[24] [24] PUMERA M, SOFER Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus[J]. Advanced Materials, 2017, 29(21): 1605299.
[25] [25] SADICK N S, CARDONA A. Laser treatment for facial acne scars: a review[J]. Journal of Cosmetic and Laser Therapy, 2018, 20(7/8): 424-435.
[26] [26] FILICE F P, DING Z F. Analysing single live cells by scanning electrochemical microscopy[J]. The Analyst, 2019, 144(3): 738-752.
[27] [27] MASLOV N A. Ultraviolet pulsed laser-induced fluorescence nonlinearity in optically thick organic samples[J]. Journal of Fluorescence, 2018, 28(2): 689-693.
[28] [28] CAI Y K, LUO X C, LIU Z Q, et al. Product and process fingerprint for nanosecond pulsed laser ablated superhydrophobic surface[J]. Micromachines, 2019, 10(3): 177.
[29] [29] OGILVY H, PIPER J A. Compact, all solid-state, high-repetition-rate 336 nm source based on a frequency quadrupled, Q-switched, diode-pumped Nd∶YVO4 laser[J]. Optics Express, 2005, 13(23): 9465.
[32] [32] WANG M, ZHANG F, WANG Z, et al. Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber[J]. Optics Express, 2018, 26(4): 4085-4095.
[33] [33] PANARIN A Y, KHODASEVICH I A, GLADKOVA O L, et al. Determination of antimony by surface-enhanced Raman spectroscopy[J]. Applied Spectroscopy, 2014, 68(3): 297-306.
[34] [34] JAFARI A, KLOBES B, SERGUEEV I, et al. Phonon spectroscopy in antimony and tellurium oxides[J]. The Journal of Physical Chemistry A, 2020, 124(39): 7869-7880.
Get Citation
Copy Citation Text
HONG Hong, ZHOU Mao, CHEN Hongling, ZHANG Peixiong, LI Zhen, YIN Hao, CHEN Zhenqiang. Passively Q-Switched Laser Based on Antimonene Nanosheets[J]. Journal of Synthetic Crystals, 2022, 51(2): 216
Category:
Received: Nov. 9, 2021
Accepted: --
Published Online: Mar. 24, 2022
The Author Email:
CSTR:32186.14.