Journal of Atmospheric and Environmental Optics, Volume. 20, Issue 4, 449(2025)
A calibration method for transfer efficiency of N2O5-cavity ring-down spectroscopy detection system
[1] Atkinson R, Arey J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 103, 4605-4638(2003).
[2] O'Keefe A, Deacon D A G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J]. Review of Scientific Instruments, 59, 2544-2551(1988).
[3] Asaf D, Tas E, Pedersen D et al. Long-term measurements of NO3 radical at a semiarid urban site: 2. Seasonal trends and loss mechanisms[J]. Environmental Science & Technology, 44, 5901-5907(2010).
[4] Brown S S, Stutz J. Nighttime radical observations and chemistry[J]. Chemical Society Reviews, 41, 6405-6447(2012).
[5] Wang S S, Shi C Z, Zhou B et al. Observation of NO3 radicals over Shanghai, China[J]. Atmospheric Environment, 70, 401-409(2013).
[6] Ayers J D, Apodaca R L, Simpson W R et al. Off-axis cavity ringdown spectroscopy: Application to atmospheric nitrate radical detection[J]. Applied Optics, 44, 7239-7242(2005).
[7] Li S W, Liu W Q, Xie P H et al. Observation of nitrate radical in the nocturnal boundary layer during a summer field campaign in Pearl River Delta, China[J]. Terrestrial, Atmospheric and Oceanic Sciences, 23, 39(2012).
[8] Vrekoussis M, Mihalopoulos N, Gerasopoulos E et al. Two-years of NO3 radical observations in the boundary layer over the Eastern Mediterranean[J]. Atmospheric Chemistry and Physics, 7, 315-327(2007).
[9] Wagner N L, Dubé W P, Washenfelder R A et al. Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft[J]. Atmospheric Measurement Techniques, 4, 1227-1240(2011).
[10] Wang X, Wang T, Yan C et al. Large daytime signals of N2O5 and NO3 inferred at 62 amu in a TD-CIMS: Chemical interference or a real atmospheric phenomenon?[J]. Atmospheric Measurement Techniques, 7, 1-12(2014).
[11] Matsumoto J, Imai H, Kosugi N et al. Methods for preparing standard nitrate radical (NO3) gas to calibrate the LIF-based instrument for measurements in the atmosphere[J]. Chemistry Letters, 34, 1214-1225(2005).
[12] Wood E C, Wooldridge P J, Freese J H et al. Prototype for in situ detection of atmospheric NO3 and N2O5 via laser-induced fluorescence[J]. Environmental Science & Technology, 37, 5732-5738(2003).
[13] Meinen J, Thieser J, Platt U et al. Using a high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS[J]. Atmospheric Chemistry and Physics, 10, 3901-3914(2010).
[14] Odame-Ankrah C A, Osthoff H D. A compact diode laser cavity ring-down spectrometer for atmospheric measurements of NO3 and N2O5 with automated zeroing and calibration[J]. Applied Spectroscopy, 65, 1260-1268(2011).
[15] Wu T, Coeur-Tourneur C, Dhont G et al. Simultaneous monitoring of temporal profiles of NO3, NO2 and O3 by incoherent broadband cavity enhanced absorption spectroscopy for atmospheric applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 133, 199-205(2014).
[16] Nam W, Cho C, Perdigones B et al. Development of a broadband cavity-enhanced absorption spectrometer for simultaneous measurements of ambient NO3, NO2, and H2O[J]. Atmospheric Measurement Techniques, 15, 4473-4487(2022).
[17] Brown S S, Stark H, Ravishankara A R. Cavity ring-down spectroscopy for atmospheric trace gas detection: Application to the nitrate radical (NO3)[J]. Applied Physics B, 75, 173-182(2002).
[18] Crowley J N, Schuster G, Pouvesle N et al. Nocturnal nitrogen oxides at a rural mountain-site in south-western Germany[J]. Atmospheric Chemistry and Physics, 10, 2795-2812(2010).
[19] Brown S S, An H, Lee M et al. Cavity enhanced spectroscopy for measurement of nitrogen oxides in the Anthropocene: Results from the Seoul tower during MAPS 2015[J]. Faraday Discussions, 200, 529-557(2017).
[20] Dorn H P, Apodaca R L, Ball S M et al. Intercomparison of NO3 radical detection instruments in the atmosphere simulation chamber SAPHIR[J]. Atmospheric Measurement Techniques, 6, 1111-1140(2013).
[21] Li Z Y, Hu R Z, Xie P H et al. Intercomparison of in situ CRDS and CEAS for measurements of atmospheric N2O5 in Beijing, China[J]. Science of The Total Environment, 613, 131-139(2018).
[22] Schuster G, Labazan I, Crowley J N. A cavity ring down/cavity enhanced absorption device for measurement of ambient NO3 and N2O5[J]. Atmospheric Measurement Techniques, 2, 1-13(2009).
[23] Osthoff H D, Pilling M J, Ravishankara A R et al. Temperature dependence of the NO3 absorption cross-section above 298 K and determination of the equilibrium constant for NO3 + NO2 ↔ N2O5 at atmospherically relevant conditions[J]. Physical Chemistry Chemical Physics, 9, 5785-5793(2007).
[24] Kennedy O J, Ouyang B, Langridge J M et al. An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2[J]. Atmospheric Measurement Techniques, 4, 1759-1776(2011).
[25] Wang D, Hu R Z, Xie P H et al. Nocturnal atmospheric NO3 radical monitoring and analysis in Beijing with cavity ring down system[J]. Spectroscopy and Spectral Analysis, 36, 3097(2016).
Get Citation
Copy Citation Text
Huan YANG, Pinhua XIE, Renzhi HU, Chuan LIN, Jinzhao TONG, Liang CHEN, Ruishuo WANG. A calibration method for transfer efficiency of N2O5-cavity ring-down spectroscopy detection system[J]. Journal of Atmospheric and Environmental Optics, 2025, 20(4): 449
Category:
Received: May. 19, 2023
Accepted: --
Published Online: Sep. 30, 2025
The Author Email: Renzhi HU (rzhu@aiofm.ac.cn)