Chinese Journal of Lasers, Volume. 50, Issue 11, 1101006(2023)
Principles and Research Advances of Intelligent Mode‐Locked Fiber Lasers
[1] Jones D J, Diddams S A, Ranka J K et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 288, 635-640(2000).
[2] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology[J]. Nature, 416, 233-237(2002).
[3] Droste S, Ycas G, Washburn B R et al. Optical frequency comb generation based on erbium fiber lasers[J]. Nanophotonics, 5, 196-213(2016).
[4] Kerse C, Kalaycıoğlu H, Elahi P et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 537, 84-88(2016).
[5] Nakazawa M, Yoshida M, Hirooka T. The Nyquist laser[J]. Optica, 1, 15-22(2014).
[6] Öktem B, Pavlov I, Ilday S et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses[J]. Nature Photonics, 7, 897-901(2013).
[7] Arumugam M. Optical fiber communication: an overview[J]. Pramana, 57, 849-869(2001).
[8] Keiser G[M]. Optical fiber communications(2000).
[9] Fermann M E, Hartl I. Ultrafast fiber laser technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 191-206(2009).
[10] Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 6, 84-92(2012).
[11] Peng J S, Boscolo S, Zhao Z H et al. Breathing dissipative solitons in mode-locked fiber lasers[J]. Science Advances, 5, eaax1110(2019).
[12] Lecaplain C, Grelu P, Soto-Crespo J M et al. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser[J]. Physical Review Letters, 108, 233901(2012).
[13] Meng F C, Lapre C, Billet C et al. Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser[J]. Nature Communications, 12, 5567(2021).
[14] Soto-Crespo J M, Akhmediev N, Pulsating Ankiewicz A. creeping, and erupting solitons in dissipative systems[J]. Physical Review Letters, 85, 2937-2940(2000).
[15] Cundiff S T, Soto-Crespo J M, Akhmediev N. Experimental evidence for soliton explosions[J]. Physical Review Letters, 88, 073903(2002).
[16] Runge A F J, Broderick N G R, Erkintalo M. Observation of soliton explosions in a passively mode-locked fiber laser[J]. Optica, 2, 36-39(2015).
[17] Peng J S, Zeng H P. Soliton collision induced explosions in a mode-locked fibre laser[J]. Communications Physics, 2, 34(2019).
[18] Grelu P, Belhache F, Gutty F et al. Phase-locked soliton pairs in a stretched-pulse fiber laser[J]. Optics Letters, 27, 966-968(2002).
[19] Krupa K, Nithyanandan K, Andral U et al. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules[J]. Physical Review Letters, 118, 243901(2017).
[20] Herink G, Kurtz F, Jalali B et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules[J]. Science, 356, 50-54(2017).
[21] Peng J S, Sorokina M, Sugavanam S et al. Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers[J]. Communications Physics, 1, 20(2018).
[22] Cole D C, Lamb E S, Del’Haye P et al. Soliton crystals in Kerr resonators[J]. Nature Photonics, 11, 671-676(2017).
[23] Karpov M, Pfeiffer M H P, Guo H R et al. Dynamics of soliton crystals in optical microresonators[J]. Nature Physics, 15, 1071-1077(2019).
[24] Wang Z Q, Nithyanandan K, Coillet A et al. Optical soliton molecular complexes in a passively mode-locked fibre laser[J]. Nature Communications, 10, 830(2019).
[25] He W, Pang M, Yeh D H et al. Formation of optical supramolecular structures in a fibre laser by tailoring long-range soliton interactions[J]. Nature Communications, 10, 5756(2019).
[26] Zou D F, Song Y J, Gat O et al. Synchronization of the internal dynamics of optical soliton molecules[J]. Optica, 9, 1307-1313(2022).
[27] Andral U, Si Fodil R, Amrani F et al. Fiber laser mode locked through an evolutionary algorithm[J]. Optica, 2, 275-278(2015).
[28] Genty G, Salmela L, Dudley J M et al. Machine learning and applications in ultrafast photonics[J]. Nature Photonics, 15, 91-101(2021).
[29] Andral U, Buguet J, Si Fodil R et al. Toward an autosetting mode-locked fiber laser cavity[J]. Journal of the Optical Society of America B, 33, 825-833(2016).
[30] Woodward R I, Kelleher E J R. Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm[J]. Scientific Reports, 6, 37616(2016).
[31] Winters D G, Kirchner M S, Backus S J et al. Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser[J]. Optics Express, 25, 33216-33225(2017).
[32] Woodward R I, Kelleher E J R. Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers[J]. Optics Letters, 42, 2952-2955(2017).
[33] Kokhanovskiy A, Ivanenko A, Kobtsev S et al. Machine learning methods for control of fibre lasers with double gain nonlinear loop mirror[J]. Scientific Reports, 9, 2916(2019).
[34] Pu G Q, Yi L L, Zhang L et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm[J]. Optica, 6, 362-369(2019).
[35] Pu G Q, Yi L L, Zhang L et al. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis[J]. Light: Science & Applications, 9, 13(2020).
[36] Wei X M, Jing J C, Shen Y C et al. Harnessing a multi-dimensional fibre laser using genetic wavefront shaping[J]. Light: Science & Applications, 9, 149(2020).
[37] Wu X Q, Peng J S, Boscolo S et al. Intelligent breathing soliton generation in ultrafast fiber lasers[J]. Laser & Photonics Reviews, 16, 2100191(2022).
[38] Pu G Q, Liu R M, Luo C et al. Intelligent single-cavity dual-comb source with fast locking[J]. Journal of Lightwave Technology, 41, 593-598(2023).
[39] Girardot J, Billard F, Coillet A et al. Autosetting mode-locked laser using an evolutionary algorithm and time-stretch spectral characterization[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1100108(2020).
[40] Jiang M, Wu H S, An Y et al. Fiber laser development enabled by machine learning: review and prospect[J]. PhotoniX, 3, 1-27(2022).
[41] Pu G Q, Liu R M, Yang H et al. Fast predicting the complex nonlinear dynamics of mode-locked fiber laser by a recurrent neural network with prior information feeding[J]. Laser & Photonics Reviews, 2200363(2023).
[42] Shalev-Shwartz S, Ben-David S[M]. Understanding machine learning: from theory to algorithms(2014).
[43] Salmela L, Tsipinakis N, Foi A et al. Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network[J]. Nature Machine Intelligence, 3, 344-354(2021).
[44] He J Y, Li C Y, Wang P et al. Soliton molecule dynamics evolution prediction based on LSTM neural networks[J]. IEEE Photonics Technology Letters, 34, 193-196(2022).
[45] Yan Q Q, Deng Q H, Zhang J et al. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers[J]. Photonics Research, 9, 1493-1501(2021).
[46] Devore J L. Probability and statistics for engineering and the sciences[J]. Biometrics, 47, 1638(1991).
[47] Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers[J]. Science, 358, 94-97(2017).
[48] Ding Y H, Xiao X S, Liu K W et al. Spatiotemporal mode-locking in lasers with large modal dispersion[J]. Physical Review Letters, 126, 093901(2021).
[49] Gao C X, Cao B, Ding Y H et al. All-step-index-fiber spatiotemporally mode-locked laser[J]. Optica, 10, 356-363(2023).
[50] Wright L G, Sidorenko P, Pourbeyram H et al. Mechanisms of spatiotemporal mode-locking[J]. Nature Physics, 16, 565-570(2020).
[51] Long J G, Gao Y X, Lin W et al. Switchable and spacing tunable dual-wavelength spatiotemporal mode-locked fiber laser[J]. Optics Letters, 46, 588-591(2021).
[52] Jing J C, Wei X M, Wang L V. Spatio-temporal-spectral imaging of non-repeatable dissipative soliton dynamics[J]. Nature Communications, 11, 2059(2020).
[53] Teğin U, Kakkava E, Rahmani B et al. Spatiotemporal self-similar fiber laser[J]. Optica, 6, 1412-1415(2019).
[54] Wu X Q, Zhang Y, Peng J S et al. Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers[J]. Nature Communications, 13, 5784(2022).
[55] Peng J S, Zhao Z H, Boscolo S et al. Breather molecular complexes in a passively mode-locked fiber laser[J]. Laser & Photonics Reviews, 15, 2000132(2021).
[56] Peng J S, Zeng H P. Triple-state dissipative soliton laser via ultrafast self-parametric amplification[J]. Physical Review Applied, 11, 044068(2019).
[57] Peng J S, Zeng H P. Experimental observations of breathing dissipative soliton explosions[J]. Physical Review Applied, 12, 034052(2019).
[58] Du Y Q, Xu Z W, Shu X W. Spatio-spectral dynamics of the pulsating dissipative solitons in a normal-dispersion fiber laser[J]. Optics Letters, 43, 3602-3605(2018).
[59] Xian T H, Zhan L, Wang W C et al. Subharmonic entrainment breather solitons in ultrafast lasers[J]. Physical Review Letters, 125, 163901(2020).
[60] Liu M, Wei Z W, Li H et al. Invisible soliton pulsation: visualizing the “invisible” soliton pulsation in an ultrafast laser[J]. Laser & Photonics Reviews, 14, 2070023(2020).
[62] Krupa K, Kardaś T M, Stepanenko Y. Real-time observation of double-hopf bifurcation in an ultrafast all-PM fiber laser[J]. Laser & Photonics Reviews, 16, 2100646(2022).
[63] Cui Y D, Zhang Y S, Huang L et al. Dichromatic “breather molecules” in a mode-locked fiber laser[J]. Physical Review Letters, 130, 153801(2023).
[64] Du Y Q, He Z W, Gao Q et al. Emergent phenomena of vector solitons induced by the linear coupling[J]. Laser & Photonics Reviews, 2300076(2023).
[65] Chang W, Soto-Crespo J M, Vouzas P et al. Extreme amplitude spikes in a laser model described by the complex Ginzburg-Landau equation[J]. Optics Letters, 40, 2949-2952(2015).
[66] Peng J S, Zeng H P. Build-up of dissipative optical soliton molecules via diverse soliton interactions[J]. Laser & Photonics Reviews, 12, 1800009(2018).
[67] Soto-Crespo J M, Akhmediev N N. Multisoliton regime of pulse generation by lasers passively mode locked with a slow saturable absorber[J]. Journal of the Optical Society of America B, 16, 674-677(1999).
[68] Sears S, Soljacic M, Segev M et al. Cantor set fractals from solitons[J]. Physical Review Letters, 84, 1902-1905(2000).
Get Citation
Copy Citation Text
Xiuqi Wu, Junsong Peng, Ying Zhang, Heping Zeng. Principles and Research Advances of Intelligent Mode‐Locked Fiber Lasers[J]. Chinese Journal of Lasers, 2023, 50(11): 1101006
Category: laser devices and laser physics
Received: Apr. 11, 2023
Accepted: May. 24, 2023
Published Online: Jun. 8, 2023
The Author Email: Peng Junsong (jspeng@lps.ecnu.edu.cn), Zeng Heping (hpzeng@phy.ecnu.edu.cn)