Acta Optica Sinica, Volume. 39, Issue 8, 0810003(2019)

X-Ray Image Classification Algorithm Based on Semi-Supervised Generative Adversarial Networks

Kun Liu, Dian Wang*, and Mengxue Rong
Author Affiliations
  • College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
  • show less
    Figures & Tables(12)
    Flow chart of GAN
    Framework of SSGAN
    Generation network structure of SSGAN
    Structure of discriminator D in SSGAN
    Training sample images
    Comparison of histogram equalization images. (a)(b)(c) Original X-ray images; (d)(e)(f) histogram equalization X-ray images
    Variaiton of loss function. (a) Loss of discriminator network; (b) loss of generator network
    Trend of classification results for samples with different number of labeled data
    Generated images of SSGAN and original images. (a) Generated images; (b) original images
    • Table 1. Average classification accuracies of samples with different number of labeled data

      View table

      Table 1. Average classification accuracies of samples with different number of labeled data

      Labeled dataAverage accuracy /%
      PCA+SVMLadderCNNSSGAN
      2552.63±4.653.12±6.448.47±5.258.69±7.1
      5058.94±6.357.60±4.155.62±6.262.47±4.7
      10063.20±4.164.27±3.761.64±5.568.71±4.3
      25068.84±3.470.79±4.471.75±5.175.94±3.5
      50070.98±5.974.17±3.276.10±3.478.87±4.8
      100073.41±6.676.39±3.881.47±5.683.20±4.6
      150075.24±4.277.83±2.582.92±4.384.57±4.1
      200076.07±3.778.32±3.484.15±2.985.10±2.7
    • Table 2. Classification accuracy of 1000 labeled samples

      View table

      Table 2. Classification accuracy of 1000 labeled samples

      LabelAccuracy /%
      BenchmarkPCA+SVMLadderSSGAN
      Atelectasis71.6267.9671.2181.97
      Effusion78.4773.6176.9482.75
      Infiltration60.9565.9561.7371.62
      Mass70.6463.8861.1885.32
      Nodule67.1361.2663.6377.38
      Pneumothorax80.6567.5367.1683.41
    • Table 3. Inception scores for samples generated by various models

      View table

      Table 3. Inception scores for samples generated by various models

      Real dataSSGANVAEDCGAN
      4.54±0.153.48±0.222.87±0.123.15±0.17
    Tools

    Get Citation

    Copy Citation Text

    Kun Liu, Dian Wang, Mengxue Rong. X-Ray Image Classification Algorithm Based on Semi-Supervised Generative Adversarial Networks[J]. Acta Optica Sinica, 2019, 39(8): 0810003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Mar. 6, 2019

    Accepted: Apr. 22, 2019

    Published Online: Aug. 7, 2019

    The Author Email: Dian Wang (wangdian687@163.com)

    DOI:10.3788/AOS201939.0810003

    Topics