Acta Optica Sinica, Volume. 38, Issue 1, 0115002(2018)
Variable Weight Cost Aggregation Algorithm for Stereo Matching Based on Horizontal Tree Structure
Fig. 2. Support weights for selected regions (the brightness value of neighborhood pixel represents the support weight for central pixel which is marked with red box). (a) Image partial block; (b) support weight map without iterative cost aggregation; (c) support weight map after iterative cost aggregation
Fig. 3. Disparity variation maps computed before and after iterative cost aggregation. (a) Reindeer left image; (b) Reindeer right image; (c) left disparity map computed before iterative cost aggregation; (d) left disparity map computed after iterative cost aggregation
Fig. 4. Principle of disparity refinement. (a) Dolls left image; (b) Dolls right image; (c) left-right consistence test; (d) initial left disparity map without disparity refinement
Fig. 5. Disparity maps with different disparity refinement methods. (a) Disparity refinement method in Ref. [11]; (b) improved disparity refinement method
Fig. 6. Disparity maps obtained by different cost aggregation algorithms (mismatched pixels are marked in red area). (a) Real disparity map; (b) by minimum spanning tree; (c) by cross-scale minimum spanning tree; (d) by guided filtering; (e) by cross-scale segment tree; (f) by cost aggregation algorithm in Ref. [11]; (g) by improved cost aggregation algorithm
Fig. 7. Experimental results of the Middlebury benchmark images. (a) Left reference images; (b) right reference images; (c) left real disparity maps; (d) by disparity refinement method in Ref. [11]; (e) by improved disparity refinement method
|
|
|
Get Citation
Copy Citation Text
Jianjian Peng, Ruilin Bai. Variable Weight Cost Aggregation Algorithm for Stereo Matching Based on Horizontal Tree Structure[J]. Acta Optica Sinica, 2018, 38(1): 0115002
Category: Machine Vision
Received: Jun. 5, 2017
Accepted: --
Published Online: Aug. 31, 2018
The Author Email: Bai Ruilin (bairuilin@hotmail.com)