Advanced Imaging, Volume. 2, Issue 4, 041002(2025)

Micron scale 3D imaging with a multi-camera array On the Cover

Amey Chaware1, Kevin C. Zhou1, Vinayak Pathak1, Clare B. Cook1, Ramana Balla1, Kanghyun Kim1, Lucas Kreiss1, Bryan Hilley2, Julia McHugh2, Praneeth Chakravarthula3, and Roarke Horstmeyer1、*
Author Affiliations
  • 1Department of Biomedical Engineering, Duke University, Durham, USA
  • 2Nasher Museum of Art, Duke University, Durham, USA
  • 3Department of Computer Science, University of North Carolina, Chapel Hill, USA
  • show less
    References(44)

    [3] R. Hartley, A. Zisserman. Multiple View Geometry in Computer Vision(2003).

    [4] I. Chugunov, Y. Zhang, F. Heide. Shakes on a plane: unsupervised depth estimation from unstabilized photography, 13240(2023).

    [9] B. Freedman. Depth mapping using projected patterns(2010).

    [10] S. R. Fanello et al. HyperDepth: learning depth from structured light without matching, 5441(2016).

    [11] D. Scharstein, R. Szeliski. High-accuracy stereo depth maps using structured light, 195(2003).

    [14] A. Gupta et al. Asynchronous single-photon 3D imaging, 7909(2019).

    [17] J. L. Schönberger et al. Pixelwise view selection for unstructured multi-view stereo, 501(2016).

    [18] Y. Hou et al. Multi-view stereo by temporal nonparametric fusion, 2651(2019).

    [19] K. Wang, S. Shen. MVDepthNet: real-time multiview depth estimation neural network, 248(2018).

    [20] K. C. Zhou et al. Mesoscopic photogrammetry with an unstabilized phone camera, 7531(2021).

    [21] H. Ha et al. High-quality depth from uncalibrated small motion clip, 5413(2016).

    [22] J. L. Schonberger, J.-M. Frahm. Structure-from-motion revisited, 4104(2016).

    [23] Y. Xiong, S. A. Shafer. Depth from focusing and defocusing, 68(1993).

    [25] W. Luo, A. G. Schwing, R. Urtasun. Efficient deep learning for stereo matching, 5695(2016).

    [26] B.-U. Lee et al. CNN-based simultaneous dehazing and depth estimation, 9722(2020).

    [27] F. Tosi et al. Learning monocular depth estimation infusing traditional stereo knowledge, 9799(2019).

    [28] W. Yin et al. Enforcing geometric constraints of virtual normal for depth prediction, 5684(2019).

    [29] C. Zhao et al. Monovit: self-supervised monocular depth estimation with a vision transformer, 668(2022).

    [30] H. Si et al. Fully self-supervised depth estimation from defocus clue, 9140(2023).

    [31] L. Yang et al. Depth anything: unleashing the power of large-scale unlabeled data, 10371(2024).

    [32] I. Chugunov et al. The implicit values of a good hand shake: Handheld multi-frame neural depth refinement, 2852(2022).

    [33] J. Watson et al. The temporal opportunist: Self-supervised multi-frame monocular depth, 1164(2021).

    [34] O. Ronneberger et al. U-net: convolutional networks for biomedical image segmentation, 234(2015).

    Tools

    Get Citation

    Copy Citation Text

    Amey Chaware, Kevin C. Zhou, Vinayak Pathak, Clare B. Cook, Ramana Balla, Kanghyun Kim, Lucas Kreiss, Bryan Hilley, Julia McHugh, Praneeth Chakravarthula, Roarke Horstmeyer, "Micron scale 3D imaging with a multi-camera array," Adv. Imaging 2, 041002 (2025)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Article

    Received: Mar. 19, 2025

    Accepted: Jun. 19, 2025

    Published Online: Jul. 21, 2025

    The Author Email: Roarke Horstmeyer (rwh4@duke.edu)

    DOI:10.3788/AI.2025.10005

    Topics