Laser & Optoelectronics Progress, Volume. 62, Issue 2, 0215004(2025)

Adaptive Stereo Matching Based on Local Information Entropy and Improved AD-Census Transform

Jingfa Lei1,2,3、*, Zihan Wei1,2, Yongling Li1,2,3, Ruhai Zhao1,2, and Miao Zhang1,2
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, Anhui , China
  • 2Key Laboratory of Intelligent Manufacturing of Construction Machinery, Anhui Education Department, Hefei 230601, Anhui , China
  • 3Sichuan Provincial Key Laboratory of Process Equipment and Control Engineering, Zigong 643000, Sichuan , China
  • show less
    Figures & Tables(13)
    Flow chart of proposed algorithm
    Census transformation process. (a) The pixel grayscale value of the original image window; (b) Census transform results
    Original image and local entropy image. (a) Original image; (b) local entropy image
    Grayscale histogram and information entropy value in three regions. (a) Grayscale histogram of part 1; (b) grayscale histogram of part 2; (c) grayscale histogram of part 3; (d) the entropy of the three regions
    Curves of weight
    Schematic diagram of path aggregation
    Matching results. (a) Original images; (b) standard parallax maps; (c) Traditional Census; (d) AD+Census; (e) proposed algorithm
    Average mismatch rates for different noises. (a) Average mismatch rates for salt-and-pepper noise; (b) average mismatch rates for Gaussian noise
    • Table 1. Parameter setting

      View table

      Table 1. Parameter setting

      ParameterT1T2λCenλADθP1P2'
      Value1.55.510302.010150
    • Table 2. Average mismatch rate under salt and pepper noise

      View table

      Table 2. Average mismatch rate under salt and pepper noise

      Noise densityCTSADAD-CensusGRDProposed algorithm
      07.097.427.208.096.12
      0.037.9410.288.3210.416.61
      0.069.0512.459.2712.447.61
      0.0910.4914.6210.2313.128.67
      0.1212.2117.7311.9616.1810.28
    • Table 3. Average mismatch rate under Gaussian noise

      View table

      Table 3. Average mismatch rate under Gaussian noise

      Standard deviationCTSADAD-CensusGRDProposed algorithm
      07.097.427.208.096.12
      27.918.048.319.777.27
      410.0110.209.6412.499.59
      611.8812.7311.6314.0911.39
      814.9815.5313.8517.6313.54
    • Table 4. Mismatch rates of no-occluded region

      View table

      Table 4. Mismatch rates of no-occluded region

      ImageMismatch rate /%
      SGMAD-CensusAda_SGMMCTProposed algorithm
      Average8.176.677.207.495.94
      Adirondack7.196.915.686.855.33
      Teddy7.756.156.146.945.76
      Pipes13.4010.0011.4812.889.25
      Recycle9.897.708.468.246.85
      Wood24.023.514.893.962.68
      Cloth26.745.726.546.075.75
    • Table 5. Mismatch rates of all regions

      View table

      Table 5. Mismatch rates of all regions

      ImageMismatch rate /%
      SGMAD-CensusAda_SGMMCTProposed algorithm
      Average10.549.099.629.938.37
      Adirondack7.737.546.277.355.84
      Teddy12.5510.8510.8211.9010.60
      Pipes18.8115.8017.0118.2814.86
      Recycle11.078.839.929.708.16
      Wood25.765.266.615.704.44
      Cloth27.296.277.096.626.30
    Tools

    Get Citation

    Copy Citation Text

    Jingfa Lei, Zihan Wei, Yongling Li, Ruhai Zhao, Miao Zhang. Adaptive Stereo Matching Based on Local Information Entropy and Improved AD-Census Transform[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0215004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Mar. 26, 2024

    Accepted: Jun. 4, 2024

    Published Online: Jan. 6, 2025

    The Author Email:

    DOI:10.3788/LOP240968

    CSTR:32186.14.LOP240968

    Topics