Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1345(2024)

Effect of Zr Doping on Energy Storage Performance of Sr0.7Bi0.2TiO3 Ferroelectric Ceramics

LIU Jianbo1, ZHENG Peng1、*, BAI Wangfeng2, and SHENG Linsheng3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(36)

    [1] [1] YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Prog Mater Sci, 2019, 102: 72-108.

    [2] [2] M GüR T. Correction: Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage[J]. Energy Environ Sci, 2018, 11(10): 3055.

    [3] [3] YANG L T, KONG X, CHENG Z X, et al. Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors[J]. J Mater Chem A, 2019, 7(14): 8573-8580.

    [4] [4] LIU Z, LU T, YE J M, et al. Antiferroelectrics for energy storage applications: A review[J]. Adv Mater Technol, 2018, 3(9): 1800111.

    [5] [5] KONG X, YANG L T, CHENG Z X, et al. Bi-modified SrTiO3-based ceramics for high-temperature energy storage applications[J]. J Am Ceram Soc, 2020, 103(3): 1722-1731.

    [6] [6] LI W B, ZHOU D, PANG L X, et al. Novel Barium titanate based capacitors with high energy density and fast discharge performance[J]. J Mater Chem A, 2017, 5(37): 19607-19612.

    [7] [7] KONG X, YANG L T, CHENG Z X, et al. Ultrahigh energy storage properties in (Sr0.7Bi0.2)TiO3-Bi(Mg0.5Zr0.5)O3 lead-free ceramics and potential for high-temperature capacitors[J]. Materials, 2020, 13(1): 180.

    [8] [8] ZOU K L, DAN Y, XU H J, et al. Recent advances in lead-free dielectric materials for energy storage[J]. Mater Res Bull, 2019, 113: 190-201.

    [9] [9] CHEN Y, HUANG Y, ZUO Y D, et al. Enhanced energy storage property achieved in Na0.5Bi0.5TiO3-based ferroelectric ceramics via composition design and grain size tuning[J]. J Eur Ceram Soc, 2022, 42(15): 6985-6996.

    [10] [10] TONG S. Size and temperature effects on dielectric breakdown of ferroelectric films[J]. J Adv Ceram, 2021, 10(1): 181-186.

    [11] [11] LIN L, LI C Y, ZHANG Y B, et al. Multi-objective collaborative design optimized highly efficient energy capacitive lead-free relaxor ferroelectrics[J]. J Mater Chem A, 2023, 11(40): 21948-21958.

    [12] [12] PARIZI S S, MELLINGER A, CARUNTU G. Ferroelectric Barium titanate nanocubes as capacitive building blocks for energy storage applications[J]. ACS Appl Mater Interfaces, 2014, 6(20): 17506-17517.

    [13] [13] WU T, PU Y P, ZONG T T, et al. Microstructures and dielectric properties of Ba0.4Sr0.6TiO3 ceramics with BaO-TiO2-SiO2 glass-ceramics addition[J]. J Alloys Compd, 2014, 584: 461-465.

    [14] [14] ZHAO P, TANG B, SI F, et al. Novel Ca doped Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectrics with high energy density and efficiency[J]. J Eur Ceram Soc, 2020, 40(5): 1938-1946.

    [15] [15] SAKURAI M, KANEHARA K, TAKEDA H, et al. Wideband dielectric spectroscopy of (Sr0.7Bi0.2)TiO3 ceramics and its microscopic mechanism of polarization[J]. J Ceram Soc Japan, 2016, 124(6): 664-667.

    [16] [16] YAO K, ZHOU C R, WANG J, et al. A new strategy to realize high energy storage properties and ultrafast discharge speed in Sr0.7Bi0.2TiO3-based relaxor ferroelectric ceramic[J]. J Alloys Compd, 2021, 883: 160855.

    [17] [17] ZHU X P, SHI P, KANG R R, et al. Enhanced energy storage density of Sr0.7BixTiO3 lead-free relaxor ceramics via A-site defect and grain size tuning[J]. Chem Eng J, 2021, 420: 129808.

    [18] [18] ZHANG G F, CAO M H, HAO H, et al. Energy storage characteristics in Sr(1-1.5x)BixTiO3 ceramics[J]. Ferroelectrics, 2013, 447(1): 86-94.

    [19] [19] CHAO M M, LIU J S, ZENG M S, et al. High discharge efficiency of (Sr, Pb, Bi)TiO3 relaxor ceramics for energy-storage application[J]. Appl Phys Lett, 2018, 112(20): 203903.

    [20] [20] LI L X, YU X X, CAI H C, et al. Preparation and dielectric properties of BaCu(B2O5)-doped SrTiO3-based ceramics for energy storage[J]. Mater Sci Eng B, 2013, 178(20): 1509-1514.

    [21] [21] CHENG B L, WANG C, WANG S Y, et al. Dielectric properties of (Ba0.8Sr0.2)(ZrxTi1?x)O3 thin films grown by pulsed-laser deposition[J]. J Eur Ceram Soc, 2005, 25(12): 2295-2298.

    [22] [22] LEE S G, KANG D S. Dielectric properties of ZrO2-doped (Ba, Sr, Ca)TiO3 ceramics for tunable microwave device applications[J]. Mater Lett, 2003, 57(9-10): 1629-1634.

    [23] [23] GUO B, ZHANG L Y, DONG J, et al. Enhanced energy storage properties of ZrO2-doped (Na0.5Bi0.5)0.4Sr0.6TiO3 Pb-free relaxor ferroelectric ceramics[J]. Ceram Int, 2021, 47(6): 8545-8554.

    [24] [24] GUO J, YU H R, ZHANG S T, et al. High energy storage performance in Sr0.64Bi0.18Na0.18TiO3-ZnO hybrid solid solution ceramics[J]. Appl Phys Lett, 2023, 122(17): 173901.

    [25] [25] WANG G, LU Z L, LI Y, et al. Electroceramics for high-energy density capacitors: Current status and future perspectives[J]. Chem Rev, 2021, 121(10): 6124-6172.

    [26] [26] WANG Z J, CAO M H, YAO Z H, et al. Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives[J]. Ceram Int, 2014, 40(9): 14127-14132.

    [27] [27] ZHANG K, ZHENG P, ZHANG H F, et al. Excellent energy storage performance of paraelectric Ba0.4Sr0.6TiO3 based ceramics through induction of polar nano-regions[J]. Ceram Int, 2022, 48(14): 19864-19873.

    [28] [28] ZHAO P, TANG B, FANG Z X, et al. Improved dielectric breakdown strength and energy storage properties in Er2O3 modified Sr0.35Bi0.35K0.25TiO3[J]. Chem Eng J, 2021, 403: 126290.

    [29] [29] CUI T, ZHANG J, GUO J, et al. Simultaneous achievement of ultrahigh energy storage density and high efficiency in BiFeO3-based relaxor ferroelectric ceramics via a highly disordered multicomponent design[J]. J Mater Chem A, 2022, 10(27): 14316-14325.

    [30] [30] LIU J K, LI P, LI C Y, et al. Synergy of a stabilized antiferroelectric phase and domain engineering boosting the energy storage performance of NaNbO3-based relaxor antiferroelectric ceramics[J]. ACS Appl Mater Interfaces, 2022, 14(15): 17662-17673.

    [31] [31] ZUO C Y, YANG S L, CAO Z Q, et al. Excellent energy storage and hardness performance of Sr0.7Bi0.2TiO3 ceramics fabricated by solution combustion-synthesized nanopowders[J]. Chem Eng J, 2022, 442: 136330.

    [32] [32] ZHENG L, SUN P C, ZHENG P, et al. Significantly tailored energy-storage performances in Bi0.5Na0.5TiO3-SrTiO3-based relaxor ferroelectric ceramics by introducing bismuth layer-structured relaxor BaBi2Nb2O9 for capacitor application[J]. J Mater Chem C, 2021, 9(15): 5234-5243.

    [33] [33] YANG Y, DOU Z M, ZOU K L, et al. Regulating local electric field to optimize the energy storage performance of antiferroelectric ceramics via a composite strategy[J]. J Adv Ceram, 2023, 12(3): 598-611.

    [34] [34] MA W G, FAN P Y, SALAMON D, et al. Fine-grained BNT-based lead-free composite ceramics with high energy-storage density[J]. Ceram Int, 2019, 45(16): 19895-19901.

    [35] [35] CHEN X Y, ZHANG D Z, LIU H B, et al. Enhanced energy storage performance of BNT-ST based ceramics under low electric field via domain engineering[J]. Ceram Int, 2022, 48(21): 31381-31388.

    [36] [36] ZHENG L, NIU Z A, ZHENG P, et al. Simultaneously achieving high energy storage performance and remarkable thermal stability in Bi0.5K0.5TiO3-based ceramics[J]. Mater Today Energy, 2022, 28: 101078.

    Tools

    Get Citation

    Copy Citation Text

    LIU Jianbo, ZHENG Peng, BAI Wangfeng, SHENG Linsheng. Effect of Zr Doping on Energy Storage Performance of Sr0.7Bi0.2TiO3 Ferroelectric Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1345

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 6, 2023

    Accepted: --

    Published Online: Aug. 19, 2024

    The Author Email: ZHENG Peng (zhengpeng@hdu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230757

    Topics