Journal of Inorganic Materials, Volume. 40, Issue 3, 329(2025)

GeP3/Ketjen Black Composite: Preparation via Ball Milling and Performance as Anode Material for Sodium-ion Batteries

Shuqi YANG, Cunguo YANG, Huizhu NIU, Weiyi SHI, and Kewei SHU*
Author Affiliations
  • School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
  • show less
    References(39)

    [1] ZHANG H, HASA I, PASSERINI S. Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials[J]. Advanced Energy Materials(2018).

    [2] ZHOU J H, SHI Q T, ULLAH S et al. Phosphorus-based composites as anode materials for advanced alkali metal ion batteries[J]. Advanced Functional Materials(2020).

    [3] GUO J Z, GU Z Y, DU M et al. Emerging characterization techniques for delving polyanion-type cathode materials of sodium-ion batteries[J]. Materials Today(2023).

    [4] DU M, DU K D, GUO J Z et al. Direct reuse of oxide scrap from retired lithium-ion batteries: advanced cathode materials for sodium-ion batteries[J]. Rare Metals(2023).

    [5] DING C S, CHEN Z, CAO C X et al. Advances in Mn-based electrode materials for aqueous sodium-ion batteries[J]. Nano-Micro Letters(2023).

    [6] CHEN F Z, XU J, WANG S Y et al. Phosphorus/phosphide-based materials for alkali metal-ion batteries[J]. Advanced Science(2022).

    [7] FU Y Q, WEI Q L, ZHANG G X et al. Advanced phosphorus- based materials for lithium/sodium-ion batteries: recent developments and future perspectives[J]. Advanced Energy Materials(2018).

    [8] WU S M, YANG W, LIU Z T et al. Organic polymer coating induced multiple heteroatom-doped carbon framework confined Co1-xS@NPSC core-shell hexapod for advanced sodium/potassium ion batteries[J]. Journal of Colloid and Interface Science(2024).

    [9] HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews(2017).

    [10] NAYAK P K, YANG L T, BREHM W et al. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises[J]. Angewandte Chemie International Edition(2018).

    [11] ZENG L C, HUANG L C, ZHU J H et al. Phosphorus-based materials for high-performance alkaline metal ion batteries: progress and prospect[J]. Small(2022).

    [12] CHEN L T, LIU Z T, YANG W et al. Micro-mesoporous cobalt phosphosulfide (Co3S4/CoP/NC) nanowires for ultrahigh rate capacity and ultrastable sodium ion battery[J]. Journal of Colloid and Interface Science(2024).

    [13] LIU R, YU L, HE X et al. Constructing heterointerface of Bi/Bi2S3 with built-in electric field realizes superior sodium-ion storage capability[J]. eScience(2023).

    [14] WANG L Z, LI Q M, CHEN Z Y et al. Metal phosphide anodes in sodium-ion batteries: latest applications and progress[J]. Small(2024).

    [15] LIU J F, WANG S T, KRAVCHYK K et al. SnP nanocrystals as anode materials for Na-ion batteries[J]. Journal of Materials Chemistry A(2018).

    [16] LI Q F, YANG D, CHEN H L et al. Advances in metal phosphides for sodium-ion batteries[J]. SusMat(2021).

    [17] SONG H, EOM K. Overcoming the unfavorable kinetics of Na3V2(PO4)2F3//SnPx full-cell sodium-ion batteries for high specific energy and energy efficiency[J]. Advanced Functional Materials(2020).

    [18] LI W W, LI H Q, LU Z J et al. Layered phosphorus-like GeP5: a promising anode candidate with high initial Coulombic efficiency and large capacity for lithium ion batteries[J]. Energy & Environmental Science(2015).

    [19] KIM D, ZHANG K, LIM J M et al. GeP3 with soft and tunable bonding nature enabling highly reversible alloying with Na ions[J]. Materials Today Energy(2018).

    [20] YANG F H, HONG J, HAO J N et al. Ultrathin few-layer GeP nanosheets via lithiation-assisted chemical exfoliation and their application in sodium storage[J]. Advanced Energy Materials(2020).

    [21] GU Z Y, WANG X T, HENG Y L et al. Prospects and perspectives on advanced materials for sodium-ion batteries[J]. Science Bulletin(2023).

    [22] SUI S M, XIE H, CHEN B et al. Highly reversible sodium-ion storage in a bifunctional nanoreactor based on single-atom Mn supported on N-doped carbon over MoS2 nanosheets[J]. Angewandte Chemie International Edition(2024).

    [23] CHANG Q Q, JIN Y H, JIA M et al. Sulfur-doped CoP@nitrogen-doped porous carbon hollow tube as an advanced anode with excellent cycling stability for sodium-ion batteries[J]. Journal of Colloid and Interface Science(2020).

    [24] SHI S S, SUN C L, YIN X P et al. FeP quantum dots confined in carbon-nanotube-grafted P-doped carbon octahedra for high-rate sodium storage and full-cell applications[J]. Advanced Functional Materials(2020).

    [25] QI W, ZHAO H H, WU Y et al. Facile synthesis of layer structured GeP3/C with stable chemical bonding for enhanced lithium-ion storage[J]. Scientific Reports(2017).

    [26] ZHAO W X, MA X Q, WANG G Z et al. Carbon-coated CoP3 nanocomposites as anode materials for high-performance sodium-ion batteries[J]. Applied Surface Science(2018).

    [27] LIU J, YAO M, WU A M et al. Inverse capacity growth and progressive lithiation of SnP-semifilled carbon nanotubes anodes[J]. Applied Surface Science(2021).

    [28] ZHANG C F, PARK G, LEE B J et al. Self-templated formation of fluffy graphene-wrapped Ni5P4 hollow spheres for Li-ion battery anodes with high cycling stability[J]. ACS Applied Materials & Interfaces(2021).

    [29] OUYANG L Z, GUO L N, CAI W H et al. Facile synthesis of Ge@FLG composites by plasma assisted ball milling for lithium ion battery anodes[J]. Journal of Materials Chemistry A(2014).

    [30] NAM K H, JEON K J, PARK C M. Layered germanium phosphide-based anodes for high-performance lithium- and sodium-ion batteries[J]. Energy Storage Materials(2019).

    [31] WANG T, ZHANG K, PARK M et al. Highly reversible and rapid sodium storage in GeP3 with Synergistic effect from outside-in optimization[J]. ACS Nano(2020).

    [32] WANG R, MO H X, LI S et al. Influence of conductive additives on the stability of red phosphorus-carbon anodes for sodium-ion batteries[J]. Scientific Reports(2019).

    [33] ZHANG Z X, LI S Q, GAO S L et al. Sn/P@G-CNTs composites as high-performance anode materials for sodium-ion batteries[J]. Electrochimica Acta(2021).

    [34] LEE J, KIM K H, KIM H H et al. NiP2/C nanocomposite as a high performance anode for sodium ion batteries[J]. Electrochimica Acta(2022).

    [35] WU X, ZHAO W, WANG H et al. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries[J]. Journal of Power Sources(2018).

    [36] HAGHIGHAT-SHISHAVAN S, NAZARIAN-SAMANI M, NAZARIAN-SAMANI M et al. Strong, persistent superficial oxidation-assisted chemical bonding of black phosphorus with multiwall carbon nanotubes for high-capacity ultradurable storage of lithium and sodium[J]. Journal of Materials Chemistry A(2018).

    [37] BOMMIER C, JI X L. Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes[J]. Small(2018).

    [38] LIANG M, XIE H N, CHEN B et al. High-pressure-field induced synthesis of ultrafine-sized high-entropy compounds with excellent sodium-ion storage[J]. Angewandte Chemie International Edition(2024).

    [39] ZENG T B A, FENG D, LIU Q et al. Boosting cyclability performance of GeP anode via in-situ generation of free expansion volume[J]. Journal of Alloys and Compounds(2021).

    Tools

    Get Citation

    Copy Citation Text

    Shuqi YANG, Cunguo YANG, Huizhu NIU, Weiyi SHI, Kewei SHU. GeP3/Ketjen Black Composite: Preparation via Ball Milling and Performance as Anode Material for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(3): 329

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 4, 2024

    Accepted: --

    Published Online: Apr. 24, 2025

    The Author Email: Kewei SHU (shukw@sust.edu.cn)

    DOI:10.15541/jim20240360

    Topics