Optics and Precision Engineering, Volume. 29, Issue 9, 2222(2021)
Remote sensing image feature extraction and classification based on contrastive learning method
[1] [1] 1陈科峻, 张叶. 循环神经网络多标签航空图像分类[J]. 光学 精密工程, 2020, 28(6): 1404-1413. doi: 10.3788/ope.20202806.1404CHENK J, ZHANGY. Recurrent neural network multi-label aerial images classification[J]. Opt. Precision Eng., 2020, 28(6): 1404-1413. (in Chinese). doi: 10.3788/ope.20202806.1404
[2] [2] 2杨州, 慕晓冬, 王舒洋, 等. 基于多尺度特征融合的遥感图像场景分类[J]. 光学 精密工程, 2018, 26(12): 3099-3107. doi: 10.3788/ope.20182612.3099YANGZH, MUX D, WANGSH Y, et al. Scene classification of remote sensing images based on multiscale features fusion[J]. Opt. Precision Eng., 2018, 26(12): 3099-3107. (in Chinese). doi: 10.3788/ope.20182612.3099
[3] PENATTI O A B, NOGUEIRA K, ADOS SANTOS J. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? [C][C], 44-51(2015).
[4] MARMANIS D, DATCU M, ESCH T et al. Deep learning earth observation classification using ImageNet pretrained networks[J]. IEEE Geoscience and Remote Sensing Letters, 13, 105-109(2016).
[5] ZHANG R, ISOLA P, EFROS A A[M]. Colorful image colorization, 649-666(2016).
[6] CHEN T, ZHAI X H, RITTER M et al. Self-supervised GANs via auxiliary rotation loss[C], 12146-12155(2019).
[8] HE K M, FAN H Q, WU Y X et al. Momentum contrast for unsupervised visual representation learning[C], 9726-9735(2020).
[13] Caron M, Misra I, Mairal J et al. Unsupervised Learning of Visual Features By Contrasting Cluster Assignments[webpage]. Arxiv Preprint Arxiv, 09882, 2020(2006).
[14] GRILL J, STRUB F, ALTCHE F et al. Bootstrap your own latent-a new approach to self-supervised learning[J]. Advances in Neural Information Processing Systems, 33(2020).
[16] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[18] ULYANOV D, VEDALDI A, LEMPITSKY V. Deep image prior[J]. International Journal of Computer Vision, 128, 1867-1888(2020).
[20] CHENG G, HAN J W, LU X Q. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 105, 1865-1883(2017).
[21] HELBER P, BISCHKE B, DENGEL A et al. EuroSAT: a novel dataset and deep learning benchmark for land use and land cover classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 2217-2226(2019).
[22] ZOU Q, NI L H, ZHANG T et al. Deep learning based feature selection for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 12, 2321-2325(2015).
[23] ZHU Q Q, ZHONG Y F, ZHAO B et al. Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 13, 747-751(2016).
[24] Kornblith S, Norouzi M, Lee H et al. Similarity of Neural Network Representations Revisited[C], -3529-3519(2019).
Get Citation
Copy Citation Text
Xiao-dong MU, Kun BAI, Xuan-ang YOU, Yong-qing ZHU, Xue-bing CHEN. Remote sensing image feature extraction and classification based on contrastive learning method[J]. Optics and Precision Engineering, 2021, 29(9): 2222
Category: Information Sciences
Received: Jan. 29, 2021
Accepted: --
Published Online: Nov. 22, 2021
The Author Email: Kun BAI (nudt@foxmail. com)