Chinese Journal of Lasers, Volume. 50, Issue 13, 1306005(2023)

Brillouin Optical Correlation‑Domain Reflectometry Based on Large Modulation Center Frequency

Yuekai Jiang1, Yuangang Lu1、*, Yuguo Yao2, Wujun Zhang1, Chongjun He1, and Lulu Liang1
Author Affiliations
  • 1The Key Laboratory of Space Photoelectric Detection and Perception of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu, China
  • 2College of Electrical and Automation Engineering, Changshu Institute of Technology, Changshu215506, Jiangsu, China
  • show less
    References(24)

    [1] Rao Y J. In-fibre Bragg grating sensors[J]. Measurement Science and Technology, 8, 355-375(1997).

    [2] Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 15, 1263-1276(1997).

    [3] Hou Y F, Wang J, Wang X et al. Simultaneous measurement of pressure and temperature in seawater with PDMS sealed microfiber Mach-Zehnder interferometer[J]. Journal of Lightwave Technology, 38, 6412-6421(2020).

    [4] Silva S, Coelho L, Frazão O. An all-fiber Fabry-Pérot interferometer for pressure sensing in different gaseous environments[J]. Measurement, 47, 418-421(2014).

    [5] Lei X Q, Dong X P, Lu C X et al. Underwater pressure and temperature sensor based on a special dual-mode optical fiber[J]. IEEE Access, 8, 146463-146471(2020).

    [6] Liu T G, Yu Z, Jiang J F et al. Advances of some critical technologies in discrete and distributed optical fiber sensing research[J]. Acta Physica Sinica, 66, 070705(2017).

    [7] Sun M, Yang S, Tang Y Q et al. Distributed fiber optic temperature sensor based on dynamic calibration of Raman Stokes backscattering light intensity[J]. Acta Physica Sinica, 71, 200701(2022).

    [8] Ashry I, Mao Y, Wang B W et al. A review of distributed fiber-optic sensing in the oil and gas industry[J]. Journal of Lightwave Technology, 40, 1407-1431(2022).

    [9] Mizuno Y, Lee H, Nakamura K. Recent advances in Brillouin optical correlation-domain reflectometry[J]. Applied Sciences, 8, 1845(2018).

    [10] Wei T, Long W J, Wu B B et al. Simulation research on distributed optical fiber Brillouin scattering strain in oil and gas pipelines[J]. Laser & Optoelectronics Progress, 59, 2106003(2022).

    [11] Agrawal G[M]. Nonlinear fiber optics(2013).

    [12] Mizuno Y, Zou W W, He Z Y et al. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR)[J]. Optics Express, 16, 12148-12153(2008).

    [13] Mizuno Y, He Z Y, Hotate K. Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on double-modulation scheme[J]. Proceedings of SPIE, 7503, 1141-1144(2009).

    [14] Hu X X, Wang Y H, Zhao L et al. Research progress in Brillouin optical correlation domain analysis technology[J]. Chinese Journal of Lasers, 48, 0100001(2021).

    [15] Wang Y H, Zhang M J, Zhang J Z et al. Millimeter-level-spatial-resolution Brillouin optical correlation-domain analysis based on broadband chaotic laser[J]. Journal of Lightwave Technology, 37, 3706-3712(2019).

    [16] Lee H, Hayashi N, Mizuno Y et al. Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept[J]. IEEE Photonics Journal, 8, 6802807(2016).

    [17] Lee H, Hayashi N, Mizuno Y et al. Operation of slope-assisted Brillouin optical correlation-domain reflectometry: comparison of system output with actual frequency shift distribution[J]. Optics Express, 24, 29190-29197(2016).

    [18] Noda K, Lee H, Mizuno Y et al. First demonstration of Brillouin optical correlation-domain reflectometry based on external modulation scheme[J]. Japanese Journal of Applied Physics, 58, 068004(2019).

    [19] Bao X Y, Chen L. Recent progress in Brillouin scattering based fiber sensors[J]. Sensors, 11, 4152-4187(2011).

    [20] Parker T R, Farhadiroushan M, Handerek V A et al. Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers[J]. Optics Letters, 22, 787-789(1997).

    [21] Yao Y G, Kishi M, Hotate K. Brillouin optical correlation domain reflectometry with lock-in detection scheme[J]. Applied Physics Express, 9, 072501(2016).

    [22] Zhang Z L, Lu Y G, Peng J Q et al. Simultaneous measurement of temperature and acoustic impedance based on forward Brillouin scattering in LEAF[J]. Optics Letters, 46, 1776-1779(2021).

    [23] Mizuno Y, He Z Y, Hotate K. Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme[J]. Optics Express, 17, 9040-9046(2009).

    [24] Noda K, Lee H, Nakamura K et al. Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on chirp modulation scheme[J]. Applied Physics Express, 13, 082003(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yuekai Jiang, Yuangang Lu, Yuguo Yao, Wujun Zhang, Chongjun He, Lulu Liang. Brillouin Optical Correlation‑Domain Reflectometry Based on Large Modulation Center Frequency[J]. Chinese Journal of Lasers, 2023, 50(13): 1306005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber optics and optical communication

    Received: Feb. 15, 2023

    Accepted: Mar. 22, 2023

    Published Online: Jul. 5, 2023

    The Author Email: Lu Yuangang (luyg@nuaa.edu.cn)

    DOI:10.3788/CJL230529

    Topics