Journal of Synthetic Crystals, Volume. 51, Issue 6, 951(2022)
Research Progress on Suppression of Slow Scintillation Component in Barium Fluoride Crystal by Doping
[1] [1] PEZZULLO G, BUDAGOV J, CAROSI R, et al. Progress status for the Mu2e calorimeter system[J]. Journal of Physics: Conference Series, 2015, 587: 012047.
[2] [2] WANG Z H, GUARDINCERRI E, RATHMAN D D, et al. Gigahertz (GHz) hard X-ray imaging using fast scintillators[C]//SPIE Optical Engineering+Applications. Proc SPIE 8852, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XV, San Diego, California, USA. 2013, 8852: 192-204.
[3] [3] YANG F, CHEN J F, ZHANG L Y, et al. La- and La-/ Ce-doped BaF2 crystals for future HEP experiments at the energy and intensity frontiers part I[J]. IEEE Transactions on Nuclear Science, 2019, 66(1): 506-511.
[4] [4] ZHU R Y. Ultrafast and radiation hard inorganic scintillators for future HEP experiments[J]. Journal of Physics: Conference Series, 2019, 1162: 012022.
[5] [5] YIN Y R, WANG G J, JIA Z T, et al. Controllable and directional growth of Er∶Lu2O3 single crystals by the edge-defined film-fed technique[J]. CrystEngComm, 2020, 22(39): 6569-6573.
[6] [6] ERMIS E E, CELIKTAS C. Effects of the positions of scintillation detectors with fast scintillators and photomultiplier tubes on TOF-PET performance[J]. Pramana, 2020, 94(1): 1-9.
[7] [7] LECOQ P, MOREL C, PRIOR J O, et al. Roadmap toward the 10 ps time-of-flight PET challenge[J]. Physics in Medicine and Biology, 2020, 65(21): 21RM01.
[8] [8] GUNDACKER S, MARTINEZ TURTOS R, KRATOCHWIL N, et al. Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission[J]. Physics in Medicine and Biology, 2020, 65(2): 025001.
[9] [9] HU C, ZHANG L Y, ZHU R Y, et al. Ultrafast inorganic scintillator-based front imager for Gigahertz hard X-ray imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940: 223-229.
[10] [10] VAN EIJK C W E. Cross-luminescence[J]. Journal of Luminescence, 1994, 60/61: 936-941.
[11] [11] RODNYI P, GARIBIN E, VENEVTSEV I, et al. The application of barium fluoride luminescence: challenges and prospects[J]. St Petersburg Polytechnical State University Journal: Physics and Mathematics, 2019, 12(1): 9-24.
[12] [12] LAVAL M, MOSZYN'SKI M, ALLEMAND R, et al. Barium fluoride: inorganic scintillator for subnanosecond timing: nuclear Instruments and Methods in Physics Research, 1983, 206(1/2): 169-176.
[13] [13] SCHOTANUS P, VAN EIJK C W E, HOLLANDER R W, et al. Development study of a new gamma camera[J]. IEEE Transactions on Nuclear Science, 1987, 34(1): 271-276.
[14] [14] GUNDACKER S, POTS R H, NEPOMNYASHCHIKH A, et al. Vacuum ultraviolet silicon photomultipliers applied to BaF2 cross-luminescence detection for high-rate ultrafast timing applications[J]. Physics in Medicine & Biology, 2021, 66(11): 114002.
[15] [15] ALEKSANDROV Y M, MAKHOV V N, RODNYI P A, et al. Intrinsic luminescence of BaF2 on the pulse excitation by synchrotron radiation[J]. Sov Phys Solid State, 1984, 26: 1734-1736.
[16] [16] VALBIS Y A, RACHKO Z A, YANSONS Y L. Short-wave UV luminescence of BaF2 crystals caused by crossover transitions[J]. Jetp Letters, 1985: 42.
[17] [17] ZHU R Y. Barium fluoride crystals for precision EMC at SSC[M]// Phyllis Hale. Supercollider 5. Boston: Springer, 1994: 411-414.
[18] [18] ZHU R Y. Crystal calorimeters in the next decade[J]. Physics Procedia, 2012, 37: 372-383.
[19] [19] TSCHIRHART R. The Mu2e experiment at fermilab[J]. Nuclear Physics B - Proceedings Supplements, 2011, 210/211: 245-248.
[20] [20] FARUKHI M R, SWINEHART C F. Barium fluoride as a gamma ray and charged particle detector[J]. IEEE Transactions on Nuclear Science, 1971, 18(1): 200-204.
[21] [21] SCHOTANUS P, VAN EIJK C W E, HOLLANDER R W, et al. Photoelectron production in BaF2-TMAE detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1987, 259(3): 586-588.
[22] [22] BEAUMONT J, HAYES W, KIRK D, et al. An investigation of trapped holes and trapped excitons in alkaline earth fluorides[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1970, 315(1520): 69-97.
[23] [23] WILLIAMS R T, KABLER M N, HAYES W, et al. Time-resolved spectroscopy of self-trapped excitons in fluorite crystals[J]. Physical Review B, 1976, 14(2): 725-740.
[24] [24] WOODY C L, LEVY P W, KIERSTEAD J A. Slow component suppression and radiation damage in doped BaF2/crystals[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 536-542.
[25] [25] VISVIKIS D, OTT R J, WELLS K, et al. Performance characterisation of large area BaF2-TMAE detectors for use in a whole body clinical PET camera[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 392(1/2/3): 414-420.
[26] [26] MEHTA S, NAYAK T K, BRAR L. Time of flight (TOF) - positron emission tomography (PET) imaging using 5-gap glass multi-gap resistive plate chambers (MRPCs)[D]. 2016
[27] [27] BISWAS D C, VIND R P, KUMAR N, et al. Fission fragment velocity distribution measurement using time of flight technique[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 901: 76-83.
[28] [28] POTS R H, AUFFRAY E, GUNDACKER S. Exploiting cross-luminescence in BaF2 for ultrafast timing applications using deep-ultraviolet sensitive HPK silicon photomultipliers[J]. Frontiers in Physics, 2020, 8: 592875.
[29] [29] ZHANG L Y, HU C, OYANG J, et al. QE/PDE of VUV photodetectors for BaF2 readout[C]//2020 IEEE Nuclear Science Symposium and Medical Imaging Conference. October 31 - November 7, 2020, Boston, MA, USA. IEEE, 2020: 1-2.
[30] [30] DEVOL T A. Evaluation of wavelength shifters for spectral separation of barium fluoride emissions[R]. Office of Scientific and Technical Information (OSTI), 1993.
[33] [33] ARTIKOV A M, BARANOV V, BUDAGOV J A, et al. Suppression of the slow component of BaF2 crystal luminescence with a thin multilayer filter[J]. Journal of Physics: Conference Series, 2019, 1162: 012028.
[35] [35] BIASINI M, CASSIDY D B, DENG S H M, et al. Suppression of the slow component of scintillation light in BaF2[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 553(3): 550-558.
[36] [36] SCHOTANUS P, DORENBOS P, VAN EIJK C W E, et al. Suppression of the slow scintillation light output of BaF2 crystals by La3+ doping[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 281(1): 162-166.
[37] [37] DORENBOS P, VISSER R, DOOL R, et al. Suppression of self-trapped exciton luminescence in La3+- and Nd3+-doped BaF2[J]. Journal of Physics: Condensed Matter, 1992, 4(23): 5281-5290.
[38] [38] REN S X, CHEN G, ZHANG F Y, et al. The effect of impurities on the radiation damage of Barium fluoride crystal[J]. MRS Proceedings, 1994, 348: 435.
[39] [39] VISSER R, DORENBOS P, EIJK CWE, et al. Scintillation properties of Ce3+ doped BaF2 crystals[J]. IEEE Transactions on Nuclear Science, 1991, 38(2): 127-131.
[40] [40] DORENBOS P, VISSER R, HOLLANDER R W, et al. The effects of La3+ and Ce3+ dopants on the scintillation properties of BaF2 crystals[J]. Radiation Effects and Defects in Solids, 1991, 119/120/121(1): 87-92.
[41] [41] GARIBIN E A, GAIN S D, GUSEV P E, et al. New scintillators based on barium fluoride crystals and ceramics[J]. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75(7): 1011-1014.
[42] [42] CHEN G, XIAO H, MAN S Q, et al. Radiation damage of rare earth ions doped barium fluoride crystals[M]// John Nonte. Supercollider 4. Boston: Springer, 1992: 809-815.
[43] [43] DROZDOWSKI W, WOJTOWICZ A J. Radiative recombination in BaF2∶Pr[J]. Journal of Alloys and Compounds, 2000, 300/301: 261-266.
[44] [44] WOJTOWICZ A J, SZUPRYCZYNSKI P, DROZDOWSKI W. Radiative recombination in Ce-, Pr-, and Tb-doped barium fluoride[J]. Journal of Alloys and Compounds, 2000, 300/301: 199-206.
[45] [45] RADZHABOV E, NAGIRNYI V. Excitation of Pr3+ions in alkaline-earth fluorides[J]. IOP Conference Series: Materials Science and Engineering, 2010, 15: 012029.
[46] [46] SHENDRIK R, RADZHABOV E, NAGIRNYI V. Time-resolved spectroscopy of 5d-4f transitions in Pr3+doped alkali-earth fluorides[J]. IOP Conference Series: Materials Science and Engineering, 2010, 15: 012083.
[47] [47] KAWAGUCHI N, YANAGIDA T, FUTAMI Y, et al. Nd concentration dependence on the optical and scintillation properties of Nd doped BaF2[J]. Optical Materials, 2010, 32(10): 1325-1328.
[48] [48] RADZHABOV E, NAGIRNYI V, KIRM M, et al. 5d-4f emission of Nd3+, Sm3+, Ho3+, Er3+, Tm3+ ions in alkaline earth fluorides[J]. IEEE Transactions on Nuclear Science, 2012, 59(5): 2074-2078.
[50] [50] FERRAZ G M, MATSUOKA M, WATANABE S, et al. Radiation effects on BaF2 crystals[J]. Radiation Effects and Defects in Solids, 1998, 146(1/2/3/4): 303-309.
[51] [51] KIRM M, STRYGANYUK G, VIELHAUER S, et al. Vacuum-ultraviolet 5d-4f luminescence of Gd3+and Lu3+ions in fluoride matrices[J]. Physical Review B, 2007, 75(7): 075111.
[52] [52] RADZHABOV E A, PROSEKINA E A. 5d-4f luminescence of Nd3+, Gd3+, Er3+, Tm3+, and Ho3+ ions in crystals of alkaline earth fluorides[J]. Optics and Spectroscopy, 2011, 111(3): 397-402.
[53] [53] ABE N, YOKOTA Y, YANAGIDA T, et al. Evaluation of gamma-ray response of Tm∶BaF2 single crystals[J]. IEEE Transactions on Nuclear Science, 2010, 57(3): 1304-1307.
[54] [54] SELIVERSTOV D M, DEMIDENKO A A, GARIBIN E A, et al. New fast scintillators on the base of BaF2 crystals with increased light yield of 0.9 ns luminescence for TOF PET[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 695: 369-372.
[55] [55] SHI G S, XIE Z J, DENG J, et al. Thermoluminescence of BaF2∶Re(Ce, Dy, Eu) crystals[J]. Journal of Electron Spectroscopy and Related Phenomena, 1996, 79: 87-90.
[56] [56] STEF M, NICOARA I, VIZMAN D. Distribution of Yb3+ and Yb2+ ions along YbF3-doped BaF2 crystals[J]. Crystal Research and Technology, 2018, 53(12): 1800186.
[57] [57] DOUALAN J L, CAMY P, BENAYAD A, et al. Spectroscopic and laser properties of Yb3+ doped CaF2, SrF2 and BaF2 laser crystals[C]//Advanced Solid-State Photonics. Nara. Washington, D.C.: OSA, 2008.
[58] [58] NESTERKINA V, SHIRAN N, GEKTIN A, et al. The Lu-doping effect on the emission and the coloration of pure and Ce-doped BaF2 crystals[J]. Radiation Measurements, 2007, 42(4/5): 819-822.
[59] [59] SOBOLEV B P, KRIVANDINA E A, DERENZO S E, et al. Suppression of BaF2 slow component of X-ray luminescence in non-stoichiometric Ba0.9R0.1F2.1 crystals (R=Rare earth element)[J]. MRS Proceedings, 1994, 348: 277.
[60] [60] RADZHABOV E, KIRM M, EGRANOV A, et al. Mechanism of exciton suppression in alkali-earth fluorides doped with La, Y, Cd[J]. Proc SCINT 2005, 2005: 60-63.
[61] [61] CHEN J F, YANG F, ZHANG L Y, et al. Slow scintillation suppression in yttrium doped BaF2 crystals[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 2147-2151.
[62] [62] HU C, XU C, ZHANG L Y, et al. Development of yttrium-doped BaF2 crystals for future HEP experiments[J]. IEEE Transactions on Nuclear Science, 2019, 66(7): 1854-1860.
[63] [63] HU C, ZHANG L Y, ZHU R Y, et al. BaF2∶Y and ZnO∶Ga crystal scintillators for GHz hard X-ray imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 950: 162767.
[65] [65] KOBAYASHI M, ISHII M, SOBOLEV B P, et al. Scintillation characteristics of nonstoichiometric phases formed in MF2-GdF3-CeF3 system Part I. (M=Ba), scintillation of Ba0.9Gd0.1-xCexF2.1 (0≤x≤0.1) fluorite-type crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 421(1/2): 180-190.
[66] [66] WOJTOWICZ A J, JANUS S, PIATKOWSKI D. Fast and efficient VUV/UV emissions from (Ba, La)F2∶Er crystals[J]. Journal of Luminescence, 2009, 129(12): 1594-1597.
[67] [67] YANG F, CHEN J F, ZHANG L Y, et al. La- and La-/Ce-doped BaF2 crystals for future HEP experiments at the energy and intensity frontiers part Ⅱ[J]. IEEE Transactions on Nuclear Science, 2019, 66(1): 512-518.
[68] [68] KUROSAWA S, YANAGIDA T, YOKOTA Y, et al. Crystal growth and scintillation properties of fluoride scintillators[J]. IEEE Transactions on Nuclear Science, 2012, 59(5): 2173-2176.
[69] [69] HAMADA M M. Auger-free luminescence of the BaF2∶Sr, BaF2∶MgF2 and CsBr∶LiBr crystals under excitation of VUV photons and high-energy electrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 340(3): 524-539.
[70] [70] HAMADA M M, NUNOYA Y, SAKURAGUI S, et al. Suppression of the slow component of BaF2 crystal by introduction of SrF2 and MgF2 crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 353(1/2/3): 33-36.
[72] [72] SPRINGIS M, VEISPALS A, KULIS P, et al. Optical and spectral properties of the Cd-containing BaF2[C]. SCINT95: Proc Int Conf on Inorganic Scintillators and their Applications, 1995: 403-406.
[73] [73] RADZHABOV E, MYSOVSKY A, EGRANOV A, et al. Cadmium centres in alkaline-earth fluoride crystals[J]. Physica Status Solidi (c), 2005, 2(1): 388-391.
[74] [74] RADZHABOV E, ISTOMIN A, NEPOMNYASHIKH A, et al. Exciton interaction with impurity in barium fluoride crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1/2): 71-75.
[75] [75] DORENBOS P, VISSER R, VAN EIJK C W E, et al. X-ray and gamma ray luminescence of Ce3+ doped BaF2 crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1991, 310(1/2): 236-239.
[76] [76] RODNYI P A, GAIN S D, GARIBIN E A, et al. Scintillators based on BaF2 with improved performance[J]. IEEE Transactions on Nuclear Science, 2012, 59(5): 2168-2172.
[78] [78] ANDERSON D F, BOUCLIER R, CHARPAK G, et al. Coupling of a BaF2 scintillator to a TMAE photocathode and a low-pressure wire chamber[J]. Nuclear Instruments and Methods in Physics Research, 1983, 217(1/2): 217-223.
[79] [79] SCHOTANUS P, DORENBOS P, VAN EIJK C W E, et al. Recent developments in scintillator research[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 132-136.
[82] [82] HU C, ZHANG L Y, ZHU R Y, et al. Spatial resolution of an inorganic crystal-based hard X-ray imager[J]. IEEE Transactions on Nuclear Science, 2020, 67(6): 1014-1019.
[83] [83] HU C, ZHANG L Y, ZHU R Y, et al. Temporal response of fast and ultrafast inorganic scintillators[C]//2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings. November 10-17, 2018, Sydney, NSW, Australia. IEEE, 2018: 1-2.
Get Citation
Copy Citation Text
ZHENG Jiaqian, CHEN Junfeng, LI Xiang, LU Baoqi, FENG He. Research Progress on Suppression of Slow Scintillation Component in Barium Fluoride Crystal by Doping[J]. Journal of Synthetic Crystals, 2022, 51(6): 951
Category:
Received: Feb. 23, 2022
Accepted: --
Published Online: Aug. 13, 2022
The Author Email: Jiaqian ZHENG (jiaqian_zheng@126.com)
CSTR:32186.14.