Journal of Synthetic Crystals, Volume. 51, Issue 6, 951(2022)

Research Progress on Suppression of Slow Scintillation Component in Barium Fluoride Crystal by Doping

ZHENG Jiaqian1,2、*, CHEN Junfeng1,3, LI Xiang1, LU Baoqi2, and FENG He2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(74)

    [1] [1] PEZZULLO G, BUDAGOV J, CAROSI R, et al. Progress status for the Mu2e calorimeter system[J]. Journal of Physics: Conference Series, 2015, 587: 012047.

    [2] [2] WANG Z H, GUARDINCERRI E, RATHMAN D D, et al. Gigahertz (GHz) hard X-ray imaging using fast scintillators[C]//SPIE Optical Engineering+Applications. Proc SPIE 8852, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XV, San Diego, California, USA. 2013, 8852: 192-204.

    [3] [3] YANG F, CHEN J F, ZHANG L Y, et al. La- and La-/ Ce-doped BaF2 crystals for future HEP experiments at the energy and intensity frontiers part I[J]. IEEE Transactions on Nuclear Science, 2019, 66(1): 506-511.

    [4] [4] ZHU R Y. Ultrafast and radiation hard inorganic scintillators for future HEP experiments[J]. Journal of Physics: Conference Series, 2019, 1162: 012022.

    [5] [5] YIN Y R, WANG G J, JIA Z T, et al. Controllable and directional growth of Er∶Lu2O3 single crystals by the edge-defined film-fed technique[J]. CrystEngComm, 2020, 22(39): 6569-6573.

    [6] [6] ERMIS E E, CELIKTAS C. Effects of the positions of scintillation detectors with fast scintillators and photomultiplier tubes on TOF-PET performance[J]. Pramana, 2020, 94(1): 1-9.

    [7] [7] LECOQ P, MOREL C, PRIOR J O, et al. Roadmap toward the 10 ps time-of-flight PET challenge[J]. Physics in Medicine and Biology, 2020, 65(21): 21RM01.

    [8] [8] GUNDACKER S, MARTINEZ TURTOS R, KRATOCHWIL N, et al. Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission[J]. Physics in Medicine and Biology, 2020, 65(2): 025001.

    [9] [9] HU C, ZHANG L Y, ZHU R Y, et al. Ultrafast inorganic scintillator-based front imager for Gigahertz hard X-ray imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940: 223-229.

    [10] [10] VAN EIJK C W E. Cross-luminescence[J]. Journal of Luminescence, 1994, 60/61: 936-941.

    [11] [11] RODNYI P, GARIBIN E, VENEVTSEV I, et al. The application of barium fluoride luminescence: challenges and prospects[J]. St Petersburg Polytechnical State University Journal: Physics and Mathematics, 2019, 12(1): 9-24.

    [12] [12] LAVAL M, MOSZYN'SKI M, ALLEMAND R, et al. Barium fluoride: inorganic scintillator for subnanosecond timing: nuclear Instruments and Methods in Physics Research, 1983, 206(1/2): 169-176.

    [13] [13] SCHOTANUS P, VAN EIJK C W E, HOLLANDER R W, et al. Development study of a new gamma camera[J]. IEEE Transactions on Nuclear Science, 1987, 34(1): 271-276.

    [14] [14] GUNDACKER S, POTS R H, NEPOMNYASHCHIKH A, et al. Vacuum ultraviolet silicon photomultipliers applied to BaF2 cross-luminescence detection for high-rate ultrafast timing applications[J]. Physics in Medicine & Biology, 2021, 66(11): 114002.

    [15] [15] ALEKSANDROV Y M, MAKHOV V N, RODNYI P A, et al. Intrinsic luminescence of BaF2 on the pulse excitation by synchrotron radiation[J]. Sov Phys Solid State, 1984, 26: 1734-1736.

    [16] [16] VALBIS Y A, RACHKO Z A, YANSONS Y L. Short-wave UV luminescence of BaF2 crystals caused by crossover transitions[J]. Jetp Letters, 1985: 42.

    [17] [17] ZHU R Y. Barium fluoride crystals for precision EMC at SSC[M]// Phyllis Hale. Supercollider 5. Boston: Springer, 1994: 411-414.

    [18] [18] ZHU R Y. Crystal calorimeters in the next decade[J]. Physics Procedia, 2012, 37: 372-383.

    [19] [19] TSCHIRHART R. The Mu2e experiment at fermilab[J]. Nuclear Physics B - Proceedings Supplements, 2011, 210/211: 245-248.

    [20] [20] FARUKHI M R, SWINEHART C F. Barium fluoride as a gamma ray and charged particle detector[J]. IEEE Transactions on Nuclear Science, 1971, 18(1): 200-204.

    [21] [21] SCHOTANUS P, VAN EIJK C W E, HOLLANDER R W, et al. Photoelectron production in BaF2-TMAE detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1987, 259(3): 586-588.

    [22] [22] BEAUMONT J, HAYES W, KIRK D, et al. An investigation of trapped holes and trapped excitons in alkaline earth fluorides[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1970, 315(1520): 69-97.

    [23] [23] WILLIAMS R T, KABLER M N, HAYES W, et al. Time-resolved spectroscopy of self-trapped excitons in fluorite crystals[J]. Physical Review B, 1976, 14(2): 725-740.

    [24] [24] WOODY C L, LEVY P W, KIERSTEAD J A. Slow component suppression and radiation damage in doped BaF2/crystals[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 536-542.

    [25] [25] VISVIKIS D, OTT R J, WELLS K, et al. Performance characterisation of large area BaF2-TMAE detectors for use in a whole body clinical PET camera[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 392(1/2/3): 414-420.

    [26] [26] MEHTA S, NAYAK T K, BRAR L. Time of flight (TOF) - positron emission tomography (PET) imaging using 5-gap glass multi-gap resistive plate chambers (MRPCs)[D]. 2016

    [27] [27] BISWAS D C, VIND R P, KUMAR N, et al. Fission fragment velocity distribution measurement using time of flight technique[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 901: 76-83.

    [28] [28] POTS R H, AUFFRAY E, GUNDACKER S. Exploiting cross-luminescence in BaF2 for ultrafast timing applications using deep-ultraviolet sensitive HPK silicon photomultipliers[J]. Frontiers in Physics, 2020, 8: 592875.

    [29] [29] ZHANG L Y, HU C, OYANG J, et al. QE/PDE of VUV photodetectors for BaF2 readout[C]//2020 IEEE Nuclear Science Symposium and Medical Imaging Conference. October 31 - November 7, 2020, Boston, MA, USA. IEEE, 2020: 1-2.

    [30] [30] DEVOL T A. Evaluation of wavelength shifters for spectral separation of barium fluoride emissions[R]. Office of Scientific and Technical Information (OSTI), 1993.

    [33] [33] ARTIKOV A M, BARANOV V, BUDAGOV J A, et al. Suppression of the slow component of BaF2 crystal luminescence with a thin multilayer filter[J]. Journal of Physics: Conference Series, 2019, 1162: 012028.

    [35] [35] BIASINI M, CASSIDY D B, DENG S H M, et al. Suppression of the slow component of scintillation light in BaF2[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 553(3): 550-558.

    [36] [36] SCHOTANUS P, DORENBOS P, VAN EIJK C W E, et al. Suppression of the slow scintillation light output of BaF2 crystals by La3+ doping[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 281(1): 162-166.

    [37] [37] DORENBOS P, VISSER R, DOOL R, et al. Suppression of self-trapped exciton luminescence in La3+- and Nd3+-doped BaF2[J]. Journal of Physics: Condensed Matter, 1992, 4(23): 5281-5290.

    [38] [38] REN S X, CHEN G, ZHANG F Y, et al. The effect of impurities on the radiation damage of Barium fluoride crystal[J]. MRS Proceedings, 1994, 348: 435.

    [39] [39] VISSER R, DORENBOS P, EIJK CWE, et al. Scintillation properties of Ce3+ doped BaF2 crystals[J]. IEEE Transactions on Nuclear Science, 1991, 38(2): 127-131.

    [40] [40] DORENBOS P, VISSER R, HOLLANDER R W, et al. The effects of La3+ and Ce3+ dopants on the scintillation properties of BaF2 crystals[J]. Radiation Effects and Defects in Solids, 1991, 119/120/121(1): 87-92.

    [41] [41] GARIBIN E A, GAIN S D, GUSEV P E, et al. New scintillators based on barium fluoride crystals and ceramics[J]. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75(7): 1011-1014.

    [42] [42] CHEN G, XIAO H, MAN S Q, et al. Radiation damage of rare earth ions doped barium fluoride crystals[M]// John Nonte. Supercollider 4. Boston: Springer, 1992: 809-815.

    [43] [43] DROZDOWSKI W, WOJTOWICZ A J. Radiative recombination in BaF2∶Pr[J]. Journal of Alloys and Compounds, 2000, 300/301: 261-266.

    [44] [44] WOJTOWICZ A J, SZUPRYCZYNSKI P, DROZDOWSKI W. Radiative recombination in Ce-, Pr-, and Tb-doped barium fluoride[J]. Journal of Alloys and Compounds, 2000, 300/301: 199-206.

    [45] [45] RADZHABOV E, NAGIRNYI V. Excitation of Pr3+ions in alkaline-earth fluorides[J]. IOP Conference Series: Materials Science and Engineering, 2010, 15: 012029.

    [46] [46] SHENDRIK R, RADZHABOV E, NAGIRNYI V. Time-resolved spectroscopy of 5d-4f transitions in Pr3+doped alkali-earth fluorides[J]. IOP Conference Series: Materials Science and Engineering, 2010, 15: 012083.

    [47] [47] KAWAGUCHI N, YANAGIDA T, FUTAMI Y, et al. Nd concentration dependence on the optical and scintillation properties of Nd doped BaF2[J]. Optical Materials, 2010, 32(10): 1325-1328.

    [48] [48] RADZHABOV E, NAGIRNYI V, KIRM M, et al. 5d-4f emission of Nd3+, Sm3+, Ho3+, Er3+, Tm3+ ions in alkaline earth fluorides[J]. IEEE Transactions on Nuclear Science, 2012, 59(5): 2074-2078.

    [50] [50] FERRAZ G M, MATSUOKA M, WATANABE S, et al. Radiation effects on BaF2 crystals[J]. Radiation Effects and Defects in Solids, 1998, 146(1/2/3/4): 303-309.

    [51] [51] KIRM M, STRYGANYUK G, VIELHAUER S, et al. Vacuum-ultraviolet 5d-4f luminescence of Gd3+and Lu3+ions in fluoride matrices[J]. Physical Review B, 2007, 75(7): 075111.

    [52] [52] RADZHABOV E A, PROSEKINA E A. 5d-4f luminescence of Nd3+, Gd3+, Er3+, Tm3+, and Ho3+ ions in crystals of alkaline earth fluorides[J]. Optics and Spectroscopy, 2011, 111(3): 397-402.

    [53] [53] ABE N, YOKOTA Y, YANAGIDA T, et al. Evaluation of gamma-ray response of Tm∶BaF2 single crystals[J]. IEEE Transactions on Nuclear Science, 2010, 57(3): 1304-1307.

    [54] [54] SELIVERSTOV D M, DEMIDENKO A A, GARIBIN E A, et al. New fast scintillators on the base of BaF2 crystals with increased light yield of 0.9 ns luminescence for TOF PET[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 695: 369-372.

    [55] [55] SHI G S, XIE Z J, DENG J, et al. Thermoluminescence of BaF2∶Re(Ce, Dy, Eu) crystals[J]. Journal of Electron Spectroscopy and Related Phenomena, 1996, 79: 87-90.

    [56] [56] STEF M, NICOARA I, VIZMAN D. Distribution of Yb3+ and Yb2+ ions along YbF3-doped BaF2 crystals[J]. Crystal Research and Technology, 2018, 53(12): 1800186.

    [57] [57] DOUALAN J L, CAMY P, BENAYAD A, et al. Spectroscopic and laser properties of Yb3+ doped CaF2, SrF2 and BaF2 laser crystals[C]//Advanced Solid-State Photonics. Nara. Washington, D.C.: OSA, 2008.

    [58] [58] NESTERKINA V, SHIRAN N, GEKTIN A, et al. The Lu-doping effect on the emission and the coloration of pure and Ce-doped BaF2 crystals[J]. Radiation Measurements, 2007, 42(4/5): 819-822.

    [59] [59] SOBOLEV B P, KRIVANDINA E A, DERENZO S E, et al. Suppression of BaF2 slow component of X-ray luminescence in non-stoichiometric Ba0.9R0.1F2.1 crystals (R=Rare earth element)[J]. MRS Proceedings, 1994, 348: 277.

    [60] [60] RADZHABOV E, KIRM M, EGRANOV A, et al. Mechanism of exciton suppression in alkali-earth fluorides doped with La, Y, Cd[J]. Proc SCINT 2005, 2005: 60-63.

    [61] [61] CHEN J F, YANG F, ZHANG L Y, et al. Slow scintillation suppression in yttrium doped BaF2 crystals[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 2147-2151.

    [62] [62] HU C, XU C, ZHANG L Y, et al. Development of yttrium-doped BaF2 crystals for future HEP experiments[J]. IEEE Transactions on Nuclear Science, 2019, 66(7): 1854-1860.

    [63] [63] HU C, ZHANG L Y, ZHU R Y, et al. BaF2∶Y and ZnO∶Ga crystal scintillators for GHz hard X-ray imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 950: 162767.

    [65] [65] KOBAYASHI M, ISHII M, SOBOLEV B P, et al. Scintillation characteristics of nonstoichiometric phases formed in MF2-GdF3-CeF3 system Part I. (M=Ba), scintillation of Ba0.9Gd0.1-xCexF2.1 (0≤x≤0.1) fluorite-type crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 421(1/2): 180-190.

    [66] [66] WOJTOWICZ A J, JANUS S, PIATKOWSKI D. Fast and efficient VUV/UV emissions from (Ba, La)F2∶Er crystals[J]. Journal of Luminescence, 2009, 129(12): 1594-1597.

    [67] [67] YANG F, CHEN J F, ZHANG L Y, et al. La- and La-/Ce-doped BaF2 crystals for future HEP experiments at the energy and intensity frontiers part Ⅱ[J]. IEEE Transactions on Nuclear Science, 2019, 66(1): 512-518.

    [68] [68] KUROSAWA S, YANAGIDA T, YOKOTA Y, et al. Crystal growth and scintillation properties of fluoride scintillators[J]. IEEE Transactions on Nuclear Science, 2012, 59(5): 2173-2176.

    [69] [69] HAMADA M M. Auger-free luminescence of the BaF2∶Sr, BaF2∶MgF2 and CsBr∶LiBr crystals under excitation of VUV photons and high-energy electrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 340(3): 524-539.

    [70] [70] HAMADA M M, NUNOYA Y, SAKURAGUI S, et al. Suppression of the slow component of BaF2 crystal by introduction of SrF2 and MgF2 crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 353(1/2/3): 33-36.

    [72] [72] SPRINGIS M, VEISPALS A, KULIS P, et al. Optical and spectral properties of the Cd-containing BaF2[C]. SCINT95: Proc Int Conf on Inorganic Scintillators and their Applications, 1995: 403-406.

    [73] [73] RADZHABOV E, MYSOVSKY A, EGRANOV A, et al. Cadmium centres in alkaline-earth fluoride crystals[J]. Physica Status Solidi (c), 2005, 2(1): 388-391.

    [74] [74] RADZHABOV E, ISTOMIN A, NEPOMNYASHIKH A, et al. Exciton interaction with impurity in barium fluoride crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1/2): 71-75.

    [75] [75] DORENBOS P, VISSER R, VAN EIJK C W E, et al. X-ray and gamma ray luminescence of Ce3+ doped BaF2 crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1991, 310(1/2): 236-239.

    [76] [76] RODNYI P A, GAIN S D, GARIBIN E A, et al. Scintillators based on BaF2 with improved performance[J]. IEEE Transactions on Nuclear Science, 2012, 59(5): 2168-2172.

    [78] [78] ANDERSON D F, BOUCLIER R, CHARPAK G, et al. Coupling of a BaF2 scintillator to a TMAE photocathode and a low-pressure wire chamber[J]. Nuclear Instruments and Methods in Physics Research, 1983, 217(1/2): 217-223.

    [79] [79] SCHOTANUS P, DORENBOS P, VAN EIJK C W E, et al. Recent developments in scintillator research[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 132-136.

    [82] [82] HU C, ZHANG L Y, ZHU R Y, et al. Spatial resolution of an inorganic crystal-based hard X-ray imager[J]. IEEE Transactions on Nuclear Science, 2020, 67(6): 1014-1019.

    [83] [83] HU C, ZHANG L Y, ZHU R Y, et al. Temporal response of fast and ultrafast inorganic scintillators[C]//2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings. November 10-17, 2018, Sydney, NSW, Australia. IEEE, 2018: 1-2.

    CLP Journals

    [1] HOU Yueyun, LIU Jianqiang, YANG Lei, YAN Jinli, ZHANG Mingrong, LIU Xiaoyang. Scintillation Properties and Irradiation Damage of Large Size BaF2:Y Scintillation Crystals Grown by Bridgman Method[J]. Journal of Synthetic Crystals, 2023, 52(4): 584

    Tools

    Get Citation

    Copy Citation Text

    ZHENG Jiaqian, CHEN Junfeng, LI Xiang, LU Baoqi, FENG He. Research Progress on Suppression of Slow Scintillation Component in Barium Fluoride Crystal by Doping[J]. Journal of Synthetic Crystals, 2022, 51(6): 951

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 23, 2022

    Accepted: --

    Published Online: Aug. 13, 2022

    The Author Email: Jiaqian ZHENG (jiaqian_zheng@126.com)

    DOI:

    CSTR:32186.14.

    Topics